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Vegetation synchronously leans upslope as climate warms
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cologists have long sought to

understand how vegetation re-

lates to climate (1, 2). Such

knowledge underlies effective
mitigation and adaptation to contempo-
rary climate change (3). Warming tem-
peratures associated with anthropogenic
increases in greenhouse gases have led
ecologists to predict that vegetation gra-
dients will “march” up the hill as cli-
mate envelopes shift with elevation, at a
lag that scales with species’ generation
times (4, 5). This prediction derives from
the hypothesis that low-temperature
constraints relax in association with
warming climate, resulting in more fa-
vorable conditions for establishment and
growth at the leading edge of a species’
range (e.g., the upper elevation bound-
ary on a mountain) (6, 7). Because of
competition and change in plant-available
water, the trailing edge is expected to
track the leading edge (5) with the cen-
tral tendency expected to concurrently
“march” upslope. This type of response
has important implications for predict-
ing and mitigating climate change
impacts, particularly for vegetation span-
ning elevation gradients. If, rather than
collectively moving with climate change,
responses of dominant species assem-
bled along an elevation gradient are
highly individualistic, there is greater
potential for more novel, nonanalog veg-
etation assemblages. Several types of
plant distribution responses to contem-
porary changes in climate have been
documented, such as truncation of spe-
cies’ ranges at lower boundaries via tree
mortality (8, 9), range-wide decreases in
species abundance, either in response to
extreme events (10) or due to increased
background rates of mortality without
increases in recruitment (11), and in-
creases in the mean elevation in the dis-
tribution of species in a region (12). Yet
no study to date has provided critically
needed information on how distributions
of dominant species along a gradient of
vegetation communities change relative
to one another, and how those changes
relate to key ecosystem properties such
as overall vegetation cover. In a new
study in this issue of PNAS, Kelly and
Goulden (13) address this knowledge
gap, documenting how dominant plant
species along an entire, contiguous val-
ley-mountain gradient shift their distri-
butions upslope synchronously with one
another in response to anthropogenic
warming.
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Fig.1. Dominantplantspeciesalongan elevation
gradient shifted synchronously with one another
over a 30-year span that had a concurrent temper-
ature increase, based on a new study by Kelly and
Goulden (13). The ranges of the plant species’ dis-
tributions remained the same, resulting in an over-
all “leaning” of the vegetation gradient toward
higher elevation.

Kelly and Goulden (13) document
rapid changes in a vegetation gradient—
spanning >2,000 m in elevation along
the Santa Rosa Mountains in southern
California—that occurred over a 30-year
interval during which regional climate
warmed. Over this period the central
tendencies of the distributions of domi-
nant plant species along the elevation
gradient shifted synchronously upslope,
in contrast to expectations based on
population dynamics (5) and paleoeco-
logical studies (4) that vegetation re-
sponses should lag behind changes in
climate. The range limits of each domi-
nant species, however, remained un-
changed. Consequently, in contrast to
expectations of a “march” up the hill,
the vegetation gradient essentially syn-
chronously “leaned” upslope—the
distribution shifted upslope within the
existing range (Fig. 1). These synchro-
nous species shifts arguably represent
the net result of enhanced growth and
new establishment at upper elevation
sites and decline and mortality at the
lower elevations. Interestingly, the func-
tional characteristic of total ecosystem
cover remained constant, suggesting that
cover recessions of one species offset
increases in the co-occurring lower ele-
vation species, and resulted in the “lean-

ing” of plant distributions (i.e., more
weighted toward the upslope direction).
Rather astonishingly, the mean elevation
increase in the vegetation distributions
closely matched estimates based on local
lapse rates and the corresponding
temperature change over the 30-year
interval.

Gradient analysis has been a powerful
tool in ecology, from the development
of the life-zone concept to testing of
community ecology theory (1, 2, 14).
Vegetation gradients have the potential
to serve as powerful barometers of cli-
mate change (9), providing a more inte-
grated assessment of responses to
punctuated disturbance events that can
trigger mortality driven by drought (8,
9), changes in fire regimes (15), or non-
native species invasions (16). The new
research by Kelly and Goulden (13)
makes a critical step forward in detect-
ing subtler but substantial changes
across an entire gradient that are not
the simple result of one process. Rather,
these changes are the net result of
establishment, growth, decline, and
mortality—processes that are notori-
ously tuned to different temporal scales.
The synchronous response across the
gradient will be important for others to
consider in assessing potential climate
change impacts and mitigation options.
Their findings for a relatively simple
climate (i.e., Mediterranean, where the
single seasonal pulse of precipitation is
reduced by warmer temperature) also
need to be evaluated for more complex
regimes (e.g., bimodal precipitation).

The results add an important insight
for those trying to answer the question,
How will vegetation respond to climate
change? The “lean” response contrasts
with the previously mentioned “march”
up the hill, or with that of a “crash”
(Fig. 2). These response types are not
mutually exclusive but rather could oc-
cur in combinations or in sequences in
time associated with either trends and/or
events in climate (17). Overall vegeta-
tion responses, rates of migration, and
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Types of distributional change for species on an elevation gradient, resulting from changes in

growth, establishment, decline, and/or mortality: “Lean,” where the range remains constant but the
central tendency shifts, as highlighted in a new study (13); “March,” where the entire distribution and its
range moves upslope (5); and ““Crash,” where mortality is widespread across the range (10). These types
are not mutually exclusive and could occur in various combinations or sequences to affect distribution

range, central tendancy, and/or skewness.

changes in ecosystem properties are
likely all sensitive to these different
types of responses. This sensitivity
should be considered in assessments of
vegetation change, whether approached
by using simple climate envelopes or
more mechanistic models (18). Novel
communities (19) and complex ecosys-
tem responses (8, 20) pose challenges
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and are more probable if dominant
plants along community gradients do
not respond synchronously. In addition,
the “lean” response could have biodiver-
sity implications associated with the de-
crease in habitat area for a species that
occurs moving upslope (5).

In short, the finding of Kelly and
Goulden (13) is particularly significant
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in that (i) it documents synchronous
change among dominant species across
an entire vegetation gradient; (if) the
change occurred relatively rapidly,
rather than with a major lag as previ-
ously postulated; and (iii) the magnitude
of elevation change corresponds directly
to expectations associated with co-
occurring temperature change. Their
results also cut to the heart of early de-
bate in community ecology (1), which
focused on the degree to which species
distributions are individual functions of
abiotic gradients (Gleason) or resultant
from high degrees of species interac-
tions (as a “superorganism” — Clem-
ents). Whittaker (14) weighed in on this
debate with classic research indicating
that vegetation gradients were the prod-
uct of highly individualistic responses of
species to driving variables (especially
temperature and precipitation). Now,
the new research of Kelly and Goulden
(13) highlights a synchronous response
that spans across communities and will
likely refocus attention on the role of
individualistic versus synchronous re-
sponses of vegetation to climate change.
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