Global Change Biology (2000) 6, 587-593

Climate-driven changes in biomass allocation in pines
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Abstract

Future increases in air temperature resulting from human activities may increase the
water vapour pressure deficit (VPD) of the atmosphere. Understanding the responses
of trees to spatial variation in VPD can strengthen our ability to predict how trees
will respond to temporal changes in this important variable. Using published values,
we tested the theoretical prediction that conifers decrease their investment in photo-
synthetic tissue (leaves) relative to water-conducting tissue in the stem (sapwood) as
VPD increases. The ratio of leaf/sapwood area (A;/Ag) decreased significantly with
increasing VPD in Pinus species but not in Abies, Pseudotsuga, Tsuga and Picea, and
the average Ar/As was significantly lower for pines than other conifers (pines:
0.17m”cm™% nonpines: 0.44m”*cm™>). Thus, pines adjusted to increasing aridity by
altering above-ground morphology while nonpine conifers did not. The average water
potential causing a 50% loss of hydraulic conductivity was -3.28 MPa for pines and -
4.52MPa for nonpine conifers, suggesting that pines are more vulnerable to xylem
embolism than other conifers. For Pinus ponderosa the decrease in A;/As with high
VPD increases the capacity to provide water to foliage without escalating the risk of
xylem embolism. Low A;/Ag and plasticity in this variable may enhance drought toler-
ance in pines. However, lower A;/Ag with increasing VPD and an associated shift in
biomass allocation from foliage to stems suggests that pines may expend more photo-
synthate constructing and supporting structural mass and carry less leaf area as the cli-

mate warmes.
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Introduction

Industrial activity and reductions in forest area are
expected to drive a rapid increase in global temperature
and evaporation rate during the next century (Kattenberg
et al. 1996); mean annual temperature may increase by as
much as 4°C or greater. This anticipated warming will
occur during the lifetime of many of today’s trees and
raises the question of how large, long-lived organisms
will respond to a warmer future with greater rates of
evaporation. Seedlings are not necessarily the best model
for large trees, which are not readily amenable to
experimentation. We have used data from the literature
for large trees to show that individuals in the genus Pinus
are likely to respond to an increase in water loss
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associated with future warmer air temperatures by
altering their above-ground allocation patterns.

For an individual tree, total leaf area is closely
correlated with the cross-sectional area of the water-
conducting portion (sapwood) of the main stem (Waring
etal. 1982; Enquist etal. 1998). This scaling relationship,
referred to as the pipe model (Shinozaki efal. 1964),
reflects coordination between water conducting and
transpiring tissues and is expressed as the leaf/sapwood
area ratio (ApL/As). ApL/As provides a functionally
relevant metric for describing the above-ground form
of trees.

Whitehead and coworkers (Whitehead etal. 1984)
derived an equation that relates A;/As and the con-
ductivity of sapwood to the evaporative potential of the
atmosphere, expressed as the vapour pressure deficit
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(VPD). By combining Darcy’s Law describing water flow
through a homogeneous medium with the Penman-
Monteith equation describing evapotranspiration from
plant canopies, they stated:

Ar/As=(K * AW)/(VPD * g, * 1 * ¢);

where K describes the conductivity of the tracheids to
water and AV is the water potential gradient through a
stem of length [. Atmospheric evaporative demand is
expressed as VPD and g is canopy-weighted stomatal
conductance. The variable ¢ represents the specific heat
and density of air, the latent heat of vaporization and
viscosity of water, and the psychrometric constant
(Whitehead et al. 1984; Mencuccini & Grace 1995).

Anticipated increases in air temperature may increase
the vapour pressure deficit of the atmosphere (VPD;
Gregory etal. 1997), and, along with elevated leaf
temperatures, this change will increase water loss from
trees. In most conifers the water potential gradient from
the soil to the leaves (A'¥) is maintained in a fairly narrow
range to ensure positive photosynthetic rates and the
continuity of the transpiration stream; the stomata of
most species of North American conifers close at a xylem
water potential near -2 MPa (Smith et al. 1985). From the
‘Whitehead equation” we predict that trees will respond
to an increase in VPD by decreasing Ap/As.
Alternatively, trees can support higher transpiration
without altering Ar/As by increasing the efficiency of
the conducting elements expressed as K. To test the
prediction that Ay /Ag will decrease as VPD increases, we
compared published values for different conifer species
growing along environmental gradients.

Materials and methods

Data were compiled from 25 studies published between
1974 and 1998 and one unpublished manuscript (R.M.
Callaway), and include observations for 6 genera and 17
species (Table1). Some studies were not included
because sapwood area (Ag) was not measured at ‘breast
height’ (1.35m), or needle area (A;) was not expressed as
projected leaf area and could not be converted, or the
sampling location could not be determined precisely. All-
sided A for some published reports of Pinus and Abies
were recalculated as projected Ay, with conversion factors
(Waring etal. 1982; Naidu et al. 1998).

The mean maximum VPD (June — August) for each
published value in North America was calculated from
the Vegetation Ecosystem Modelling and Analysis
Project (VEMAP) data set (Kittel etal. 1995). The
Intergovernmental Panel on Climate Change (IPCC)
climate dataset (New etal. 1999) was used to calculate

VPD for Pinus sylvestris, Picea sitchensis, Pinus radiata, and
Psuedotsuga menzeisii from the UK, Australia, and Italy.

Results and discussion

The leaf/sapwood area ratio of pines decreased sig-
nificantly with summer VPD (Fig.1). Of the 21 observa-
tions defining the regression, 15 were for Pinus contorta
(AL/Ag: 0.121-0.290m*cm™) and P. ponderosa (AL/As:
0.104-0.201 m?cm™>). These North American species
dominated the relationship and the A;/Ag for each of
these species individually was negatively correlated with
VPD (P. contorta: N=6, r2=0.87, P<0.01; P. ponderosa:
N=9, ¥*=0.80, P<0.01). The large intraspecific variance
for these species suggests that there is substantial
phenotypic plasticity for A /As. Some of the variance
around the regression is caused by differences in stand
density and in height to the base of the live crown among
the sample populations (Dean & Long 1986; Makela et al.
1995). Pinus sylvestris growing in a cool and moist
environment in Great Britain (VPD<1.2kPa) also
showed a negative relationship between A;/As and
VPD (Mencuccini & Grace 1995) but was displaced from
the other pines.

There was no relationship between A;,/Ag and VPD for
the non-Pinus conifers (Fig.1. P=0.84), or between A/
Ag and wind velocity (pines: P=0.47; nonpines: P =0.86)
or precipitation (pines: P=0.99; nonpines: P=0.22) for
the pines or nonpines. The contrasting response of A; /Ag
to VPD between Pinus and other genera suggests that
evolutionary divergence within the conifers may influ-
ence the expected morphological response to rapid
changes in climate. We hypothesize that the functional
basis of this divergence is related to different mechan-
isms of drought tolerance among genera.

The flush of leaves and increment of wood each spring
is an opportunity for trees to alter structural features that
regulate transpiration. The flow of water through stems
is controlled by dimensions of the individual conducting
elements (tracheids in conifers) and by the total invest-
ment in conducting xylem relative to leaves for the whole
tree (Ar/As). For conifers, larger diameter tracheids and
a greater number or size of the bordered pits between
them, increases their capacity to transport water
(Pallardy etal. 1995). Increasing tracheid dimensions,
however, elevates the risk of embolism during rapid
transpiration when the water column is under extreme
tension. Because of this trade-off, a greater investment in
sapwood rather than an increase in the dimensions of
tracheids may be a safer way of controlling foliage water
potential when exposed to a dry atmosphere. In addition
to their responsiveness to VPD, pines have, on average,
substantially lower Ap/Ag (0.17 m?’cm™?;, N= 8) than
nonpines (0.44 m?em™?; N=11; P<0.01; two-tailed t-test;
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Table 1 Leaf: sapwood area ratios (A;/Ag; m?cm™) 16 conifer species from Europe, North America, and Australia
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Species Ar/Asg Latitude, longitude Source
Pines
Pinus albicaulis 0.310 46°05" N, 114°50" W R.M. Callaway, unpubl. data
Pinus contorta 0.121 41°30" N, 112°30° W Dean & Long (1986)
0.150 41°00" N, 105°00" W Long & Smith (1988)
0.150 43°30" N, 122°00° W Waring etal. (1982)
0.176 39°30" N, 105°30" W Kaufmann & Troendle (1981)
0.228 41°00" N, 106°00° W Pearson etal. (1984)t
0.230 54°50" N, 3°40° W Whitehead et al. (1984)
0.290 52°07' N, 122°54’ W Keane & Weetman (1987)t
Pinus ponderosa 0.104 39°34’ N, 119°50" W Callaway et al. (1994)
0.104 39°35" N, 119°47" W Callaway et al. (1994)
0.104 39°33’ N, 119°22" W Callaway etal. (1994)
0.121 35°20" N, 111°48’ W Grier & Waring (1974)
0.130 46°51’ N, 113°29° W Gower et al. (1993)
0.158 47°00" N, 114°30" W O’Hara & Valappil (1995)t
0.190 43°45" N, 122°00° W Waring etal. (1982)
0.201 38°41’ N, 119°44" W Callaway etal. (1994)
0.201 39°22" N, 119°41" W Callaway et al. (1994)
Pinus radiata 0.260 37°47" S, 145°26' E Teskey & Sherriff (1996)
Pinus resinosa 0.112 46°51" N, 113°29° W Gower etal. (1993)
Pinus sylvestris 0.090 52°25" N, 0°40" E Mencuccini & Grace (1995)
0.117 52°00" N, 0°40" E Whitehead (1978)
0.150 56°14’ N, 4°16" W Mencuccini & Grace (1995)
0.105 52°17" N, 5°45" E VanHees & Bartelink (1993)
Pinus taeda 0.085 35°58" N, 79°05" W Naidu etal. (1998)
0.089 34°00" N, 80°30" W Shelburne etal. (1993)*
Non-pines
Abies amabalis 0.630 44°10" N, 122°20° W Waring etal. (1982)
Abies balsamea 0.461 44°54’ N, 68°38’ W Gilmore etal. (1996)
0.673 44°30" N, 72°30° W Marchand (1984)
Abies grandis 0.400 42°50" N, 122°30° W Waring et al. (1982)
0.510 43°45" N, 122°00° W Waring etal. (1982)
Abies lasiocarpa 0.750 39°30" N, 105°30" W Kaufmann & Troendle (1981)+
0.800 46°05" N, 114°50" W Callaway, unpubl. data
Juniperus occidentalis 0.224 44°00" N, 120°00" W Gholz (1980)t)
Picea engelmanii 0.290 39°30" N, 105°30" W Kaufmann & Troendle (1981)t
Picea rubens 0.250 44°30" N, 72°30° W Marchand (1984)
0.350 43°45" N, 122°0' W Waring et al. (1982)
Picea sitchensis 0.350 55°50" N, 4°35" W Whitehead et al. (1984)
Pseudotsuga menziesii 0.370 49°10" N, 123°35' W Brix & Mitchell (1983)
0.421 52°00" N, 5°04" E Bartetelink (1996)
0.458 43°47' N, 11°44’ E Borghetti etal. (1986)
0.470 42°20" N, 123°00° W Waring etal. (1982)
0.480 44°31" N, 123°52’ W St.Clair (1993)
0.542 44°20" N, 123°21" W Espinosa Bancalari efal. (1987)
0.601 49°00" N, 123°55' W Binkley (1984)
Tsuga heterophylla 0.410 44°30" N, 123°45" W Waring etal. (1982

tAll-sided leaf area was converted to projected leaf area using a conversion factor from Waring et al. (1982).
*All-sided leaf area was converted to projected leaf area using a conversion factor from Naidu efal. (1998).

t=4.74, t;+=2.13). Lower AL /Ag and the ability to make
whole-tree adjustments to VPD may help explain the
greater abundance of pines in warmer, drier habitats
than other genera of conifers (Farjon 1990).

The importance of plasticity in above-ground alloca-
tion relative to changes in tracheid anatomy as a
response to aridity is further supported by the non-

intuitive observation that drought-adapted pines are
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more vulnerable to xylem embolism than nonpines.
Vulnerability is expressed as the water potential causing
a 50% loss of conductivity through a stem segment
(LCsp). We compiled data from the literature on vulner-
ability of the xylem to drought-induced embolism for
several pine and nonpine conifers (Sperry & Tyree 1990;
Cochard 1992; Sperry & Sullivan 1992; Sperry etal. 1994;
Sperry & lkeda 1997; Linton etal. 1998) and from H.
Mabherali (unpubl.) and J. Pifiol and A. Sala (unpubl.).
The mean LCs for Abies, Juniperus, Picea, and Pseudotsuga
is —4.52 MPa (range: —2.7 to —7.5 MPa, N =13). In contrast,
the mean LCsg for Pinus albicaulis, P. contorta, P. edulis, P.
ponderosa, and P. sylvestris is -3.28 MPa (range: -2.9 to —
45MPa N=6;). This difference (two-tailed t-test,
taie=2.11, =255, P=0.02) in vulnerability provides
further evidence that species of Pinus overcome the risk
of embolism under warm, dry conditions by having
lower Ap/As than nonpine conifers. The exceptional
capacity of pines to acclimate to arid conditions suggests
that they may displace nonpine conifer forests as the
climate warms.

How will projected changes in Ay /As alter the above-
ground morphology of pines in the future? As a model
system, we compared Pinus ponderosa growing on the

Pinus albicaulis
Pinus contorta
Pinus ponderosa
Pinus radiata
Pinus resinosa
Pinus sylvestris
Pinus taeda

Abies amabilis

Abies balsamea
Abies grandis

Abies lasiocarpa
Juniperus occidentalis

Picea engelmannii Fig.1 The relationship between leaf/sap-
Picea rubens wood area ratio (Ap/As) and average
Picea sitchensis maximum summer atmospheric water
Pseudotsuga menzeisii vapour deficit (VPD) for species in the

Tsuga heterophylla genus Pinus and other nonpine conifer
species. Each point is an independent ob-
servation and the data were fit by least-
squares linear regression. Values for Pi-
nus sylvestris were not included in the re-
gression model. There was no statistical
relationship between A;/As and VPD for
non-Pinus species.

same soil substrate and stand density but at high and low
elevations on the east slope of the Sierra Nevada and
adjacent Great Basin desert (DeLucia et al. 1988; DeLucia
& Schlesinger 1990). Summer temperature and VPD are
approximately 3°C warmer and 1kPa (60%) higher,
respectively, in the desert populations; the desert stands
therefore provide a reasonable proxy for trees in the
future. Desert trees responded to this environmental
gradient by having a lower A;/As (0.1m*cm™) com-
pared to montane populations (0.2 m?cm™?, Callaway
etal. 1994). Common garden experiments with seedlings
indicate that most of this variance is phenotypic
(Maherali 1999).

We used allometric descriptions of above-ground form
to construct a typical desert and montane tree of the
same stem diameter (Carey etal. 1997, 1998). Associated
with the lower Ap/As, the desert pine was considerably
shorter than its montane counterpart, had a more open
crown, and supported more biomass in sapwood and
less biomass in foliage (Fig.2). This shift in biomass
allocation contributes significantly to greater leaf-specific
hydraulic conductivity in desert compared with montane
trees (Maherali 1999). The combined increase in sapwood
mass and decrease in leaf mass means that desert trees,

©2000 Blackwell Science Ltd, Global Change Biology, 6, 587-593
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Fig.2 A representative ponderosa pine tree, derived from allometric equations, from a cool, moist montane environment and from a
warm, dry desert environment. Trees are drawn to scale and both have a stem diameter of 50cm (measured 1.35m above the
ground). The height and total above-ground biomass of the montane and desert trees is 17.7 and 12.1m and 945 and 939 kg, respec-
tively. The relative investment of biomass in different above-ground components is shown in the bar graph.

and by inference trees in the future, will expend more
photosynthate supporting structural mass and have less
total leaf area than their contemporary counterparts. A
similar shift in above-ground allocation with changing
VPD has been reported for Pinus sylvestris in the UK
(Miékela et al. 1995). The absence of a substantial stomatal
response to growth under elevated CO, in pines
(Ellsworth etal. 1995; Curtis & Wang 1998; Pataki et al.
1998), suggests that the increasing concentration of this
gas in the atmosphere will not mitigate the effect of
higher VPD on A /As. Elevated CO, may, however,
provide additional carbon to support sapwood and
stems without reducing leaf area. At least for P. ponderosa
seedlings, elevated CO, does not alter the climate-driven
change in A;/As (Maherali 1999), but the response of
large trees remains unknown.

©2000 Blackwell Science Ltd, Global Change Biology, 6, 587-593
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