INFLUENCES OF TEMPERATURE HISTORY, WATER STRESS, AND NEEDLE AGE ON METHYLIBUTENOL EMISSIONS

DENNIS W. GRAY,1,3 MANUEL T. LERDAU,1 AND ALLEN H. GOLDSTEIN2

1Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794-5245 USA
2Department of Environmental Science, Policy and Management (ESPM), University of California, 151 Hilgard Hall, Berkeley, California 94720 USA

Abstract. Volatile organic compounds emitted by plants have long been recognized as having important influences on tropospheric chemistry, most notably in contributing to the production of tropospheric ozone and aerosols. One such compound, methylbutenol (MBO), was recently identified as a major component of the volatiles emitted by ponderosa pine and several other species of pine in western North America. On short time scales, MBO emissions increase with light intensity in parallel with photosynthetic responses, but emissions and photosynthesis show opposite responses to increases in temperature. We investigate the response of MBO emission to water stress, ambient temperature, and the aging of needles in field grown Pinus ponderosa (ponderosa pine). Photosynthetic rates and MBO production capacities of P. ponderosa were measured over the course of a season on saplings at a site that experienced summer drought and at a site that received supplementary water. In addition, a water-stress alleviation experiment was performed in which drought-stressed P. ponderosa seedlings were re-watered at the end of the season and pre-/post-alleviation photosynthetic rates and MBO production capacities were compared. Over the season photosynthesis declined while MBO production capacity tracked changes in ambient temperature linearly both over the entire season and on a day-to-day basis. Although severe water stress reduced photosynthetic rates, there was no difference in the response of MBO production capacity to ambient temperature under either drought-stressed or well-watered conditions, and there was no change in MBO production capacity following water stress alleviation. MBO emission declined with needle age. The correlation between MBO production capacity and ambient temperature is consistent with the view that MBO may provide a protection against high temperature stress similar to that suggested for isoprene.

Key words: drought stress; 2-methyl-3-buten-2-ol; methylbutenol; needle age; photosynthesis; Pinus ponderosa; ponderosa pine; temperature; volatile organic compounds; water stress.

INTRODUCTION

Emission of volatile organic compounds from plants represents the single most important source of photochemically reactive compounds into the troposphere and is an important mechanism whereby terrestrial plants directly alter the oxidative capacity of the lower atmosphere (Fehsenfeld et al. 1992). Various modeling studies have implicated biogenic volatile organic compounds (BVOCs) in the formation of tropospheric ozone (e.g., Brasseur and Chatfield 1991, Chameides et al. 1992, Fehsenfeld et al. 1992). VOCs may also augment the greenhouse effects of methane by increasing the atmospheric lifetime of this greenhouse gas (Jacob and Wofsy 1988, Wuebbles et al. 1989). In light of these important regional and global scale effects, the physiological and ecological processes regulating BVOC emission into the atmosphere have received considerable attention (Tingey et al. 1979, 1981, Monson and Fall 1989, Harley et al. 1994, 1996, Monson et al. 1994), and numerous efforts have been undertaken to develop predictive models of BVOC emission based on the processes regulating emissions (Guenther et al. 1993, 1995, Fall and Wildermuth 1998). The most commonly studied BVOCs are monoterpenes (C_{10}H_{16}) and isoprene (C_{5}H_{8}); however, in 1991 a previously unobserved alcohol, 2-methyl-3-buten-2-ol (methylbutenol or MBO), was detected at high concentrations in air samples over the Colorado Rockies (Goldan et al. 1993). Subsequent work has shown MBO to be phylogenetically produced, photochemically reactive, and important in tropospheric chemistry (Rudich et al. 1995, Fantechi et al. 1998a, b, Harley et al. 1998).

Methylbutenol production/emission affects both the atmospheric chemistry of the western United States and has implications for carbon budgets in these ecosystems. MBO is often one of the most important reducing compounds found in the troposphere of the intermountain western United States, and its importance in regulating atmospheric oxidative capacity in the lower atmosphere of the Sierra Nevada mountains of California has been demonstrated by Lamanna and Goldstein (1999), who estimate that MBO accounts for 21% of the OH radical loss rate over a mixed conifer forest
in this region. Methylbutenol oxidation in the atmosphere also provides the largest regional source of acetone, a compound that plays a critical role in OH production in the upper troposphere (Goldstein and Schade 2000). In addition, MBO emission represents a sizable source of carbon lost from the emitting plant that is not currently factored into ecosystem carbon models. Annual MBO production amounts to ~0.5% of net assimilation in ponderosa pine (Pinus ponderosa) (Goldstein et al. 2000, Schade et al. 2000), an amount equivalent to estimates of net ecosystem productivity from many forests (Crunz et al. 1999). Despite the importance of MBO at ecosystem and tropospheric scales, little attention has been focused on the ecological regulation of production and emission. Such mechanistic understanding is important for estimating emissions at large spatial and temporal scales and for evaluating the potential functional significance of MBO production (Lerdau et al. 1997).

Several studies have examined the short-term biochemical and physiological regulation of MBO production/emission. It is produced enzymatically in the chloroplast from dimethylallyl diphosphate that is formed through the standard plastidic pathway for isoprenoid biosynthesis, the deoxyxylulose phosphate pathway (DOXP; Rohmer et al. 1993, Lichtenhaller et al. 1997, Schwender et al. 1997, Lichtenhaller 1999, Fisher et al. 2000). MBO production is a light-dependent process that parallels the response of photosynthesis to light (Harley et al. 1998), suggesting a close association between MBO production and photosynthetic carbon assimilation. Since MBO is a polar compound and unlikely to diffuse through the leaf cuticle, emission most likely occurs through the stomata in a fashion similar to that shown for isoprene emission (Fall and Monson 1992). Once produced, MBO is released immediately into the atmosphere, with only small storage pools (probably dissolved in aqueous solution) present within the leaf. MBO emission from needles is absent in darkness (Harley et al. 1998). In response to temperature, MBO emission follows an Arrhenius temperature response, increasing exponentially to a temperature optimum of ~37°C in Pinus ponderosa (ponderosa pine) and subsequently declining precipitously (Harley et al. 1998). These short-term responses to light and temperature (response times of seconds to minutes) are similar to those observed for isoprene (Loreto and Sharkey 1990, Monson et al. 1991, 1992, Harley et al. 1997).

Given the similarity between the responses of MBO emission and isoprene emission at short time scales, it is reasonable to expect that factors shown to influence isoprene production at longer time scales might also affect MBO emission. Additionally, since MBO production is linked biochemically to photosynthesis through dimethylallyl diphosphate (DMADP) production via the DOXP pathway, any factors that alter photosynthetic capacity might also influence MBO production.

Two such factors are needle age and water stress. Photosynthetic rates in pines have been shown to decline with needle age after full expansion (Porté and Loustau 1998, Jach and Ceulemans 2000), and a previous study by Harley et al. (1998) has shown similar declines in MBO production capacity in older needles. However, it is unknown whether the instantaneous responses of MBO emission to variations in light and temperature also change with needle age.

Photosynthetic metabolism can also be dramatically influenced by the pronounced seasonal drought that many conifers of western North America, including pines, regularly experience. This drought reduces stomatal conductance and photosynthetic rate (Law and Waring 1994, Goldstein et al. 2000, Panek and Goldstein 2001). Whether such drought-induced reductions in carbon assimilation influence MBO emission rates over the season is unknown; however, previous studies have shown that isoprene emission responds to water stress (Sharkey and Loreto 1993, Fang et al. 1996).

In addition to the response of isoprene emission to water stress, isoprene basal emission rate has been shown to respond to ambient temperature (Monson et al. 1992, Sharkey and Loreto 1993, Hansol and Sharkey 2001, Petron et al. 2001). A similar response is suggested by Schade et al. (2000), who show that isoprene production is dominated by isoprene basal emission rate, then natural progression of seasonal drought and a nearby site that was watered to alleviate drought stress. We also investigated the effect of water stress alleviation, as may happen following autumn rains, by watering drought-stressed seedlings at the end of the summer. The impacts of needle age and ambient temperature history were determined by measuring light and temperature response
curves and basal MBO emission rates across a range of needle ages under a variety of environmental conditions. From these studies we can determine the extent to which MBO metabolism is independent of (or dependent upon) photosynthesis. This determination is the first step toward an ecological understanding of MBO flux regulation.

METHODS

Site and species

Experiments were conducted in the central Sierra Nevada Mountains of California, USA, at the University of California at Berkeley Blodgett Forest Research Station and on adjacent property owned and operated by Sierra Pacific Industries. Blodgett Forest Research Station is located east of the town of Georgetown, California, at an elevation of 1300 m (38°53′42.9″ N, 120°37′57.9″ W). This region experiences a Mediterranean climate with hot dry summers and cool wet winters. Studies took place at two locations. The first location, referred to as the Tower site, was an even-aged plantation of ponderosa pine (*Pinus ponderosa* Dougl. ex Laws.; aged 7–8 yr, 3–5 m in height) owned by Sierra Pacific Industries. This site also contained scattered individuals of sugar pine (*Pseudostuga menziesii* (Mirb.) Doug.), Douglas fir (*Pseudotsuga menziesii* (Mirb.) Franco), white fir (*Abies concolor* (Gord. & Glend.) Hildebr.), and incense cedar (*Calocedrus decurrens* Torr.). The Tower site was established in 1997 and outfitted with a hydrocarbon sampling and micrometeorological tower that provided detailed flux and climate records for the site. Additional details of this site and the tower are reported in Lamanna and Goldstein (1998, Baker et al. 1999, Schade et al. 2000, Schade and Goldstein 2001).

Experimental designs

We used two treatments to assess the impacts of water stress and needle age on MBO and photosynthetic metabolism. In 1998 measurements were made at the Tower and Watered sites over the course of a season, from June through October. To determine if the slow onset of water stress that occurred at the Tower site influenced MBO production capacity, we compared MBO production capacity at both sites at the beginning of the season and again at the end of the season after sizable water stress differences (as measured by stomatal conductance) had accrued between trees at the Tower and Watered sites (Fig. 3).

In 1999 the photosynthetic parameters and MBO fluxes of a set of eight seedlings (aged 3–4 yr) were measured in late August following the natural onset of seasonal drought in the field. Half of these were then watered by saturating the soil around their base with 45 L of water each day. After 7 d both the watered and unwatered seedlings were remeasured for both photosynthetic parameters and MBO emission rate.

In 1998 measurements of photosynthetic parameters and MBO fluxes were made on age 0 (current flush), age 1 (1 yr old), and age 2 (2 yr old) needles at both sites. Measurements were made four times between June and October and alternated between the Tower site and Watered site. Measurements at a site took ~1–2 wk to complete and were repeated at ~1-mo intervals. At the Tower site two branches on each of eight trees were measured, and at the Watered site two branches on each of six trees were measured. Needles were harvested and dried at the end of each measurement sequence. All measurements were taken at a photosynthetic photon flux density (PPFD) of 1500 μmol·m⁻²·s⁻¹ photons between 400 and 700 nm, a temperature of 30°C, and a CO₂ concentration of 350 ppm (in micromoles of CO₂ per mole of air) in the cuvette (basal emission rate, sensu Monson et al. 1995). Light and temperature response curves were made at the Tower site on all available needle age classes of two trees early in the season and again after the development of moderate water stress. In addition, between 28 July and 9 August of 1998, repeated measurements of photosynthetic parameters and MBO basal emission rates were made on the same set of needles on a single tree located at the Tower site at 1700 hours each day.

Analytical methods

Gas exchange and chromatography protocols.—Leaf level measurements of photosynthetic parameters and MBO emission rates were made using a LI-COR
6400 portable gas exchange system (LI-COR, Lincoln, Nebraska, USA) and a Voyager portable gas chromatograph (GC; PE photovac, Norwalk, Connecticut, USA). The LI-COR 6400 allows good control of the light, temperature, and CO₂ environment experienced by the foliage being measured. Light control in this system is achieved with a series of red and blue light-emitting diodes (peak irradiance 665 nm and 470 nm) mounted in the top of the leaf cuvette. Temperature is regulated using thermoelectric (Peltier) coolers (LI-COR) mounted on the sides of the cuvette. The Peltier coolers supplied by the manufacturer allow temperature control of the cuvette in a range of ±6°C of ambient temperature; however, by adding heating elements in a cardboard shroud enclosing the lower portions of the cuvette, we were able to operate at temperatures as much as 15°C above ambient. The Voyager GC contains three columns and a 0.5-mL sample loop, operates isothermally, and uses a photonization detector for detection and quantification of volatiles.

Two three-needle fascicles (six needles) were clamped into the LI-COR cuvette, and the cuvette was flushed with 100 μmol/s of ambient air scrubbed of hydrocarbons by passage through an activated charcoal filter. Exhaust gases from the cuvette were routed via Teflon tubing past the sample inlet port on the GC. The GC sample loop was loaded via an internal sampling pump, and a 0.5-mL aliquot was injected onto a methyl silicone capillary column (15 m length, internal diameter 0.32 mm, coating thickness 12 μm). The GC was operated isothermally at 65°C and 103.42 kPa column pressure of Ultra High Purity nitrogen carrier gas. The detection limit for this system was 5 ppb (in nanomoles of MBO per mole of air), and precision was within 10%. Chamber air typically had mixing ratios between 10 and 100 ppb (in nanomoles of MBO per mole of air) gas standard (Scott-Marrin, Riverside, California, USA) were run at the end of each sampling day.

Light and temperature response curves.—Light response curves were developed by holding two fascicles at 30°C, 350 ppm CO₂ (in micromoles of CO₂ per mole of air), and a saturating PPFD of 2000 μmol·m⁻²·s⁻¹ photons between 400 and 700 nm until steady state MBO flux was attained (30–40 min). Holding temperature and CO₂ constant, light was subsequently reduced in discrete steps allowing the MBO flux to come to equilibrium prior to the next light reduction. Temperature response curves were developed by holding two fascicles at a constant light level of 1500 μmol·m⁻²·s⁻¹ photons, 350 ppm CO₂, and the lowest temperature it was possible to obtain until MBO flux reached steady state. Holding light and CO₂ constant, temperature was subsequently increased in 2°C steps allowing the MBO flux to come to equilibrium prior to the next temperature increase. Temperature was increased until MBO emission began to decline precipitously.

Instantaneous emission rate vs. basal emission rate/production capacity.—Since MBO emission is both light and temperature dependent, these factors must be held constant to allow comparison among measurements and investigation of factors regulating emission at longer time scales. We measured MBO and photosynthetic metabolism under constant conditions in order to control for the effects of light and temperature. This “basal” emission rate is an index of the plant’s capacity to produce MBO (see Monson et al. 1995 for the analogous argument with respect to isoprene production). Comparison of production capacities obtained by holding light and temperature constant factors out the short-term influence of light and temperature and allows one to investigate physiological and biological changes with respect to MBO production that occur over longer-term periods and in response to experimental manipulations.

Area- vs. mass-based measurements

Flux measurements were expressed either per unit of biomass or per unit needle surface area (all-sided area). Subsequent comparisons made in the laboratory showed that projected leaf area is approximately one-half the calculated needle surface area. Total leaf surface area inside the cuvette was calculated using caliper measurements made on each needle. Each needle of a three-needle fascicle was assumed to have a cross section shaped like a pie slice taken from a circle with a radius equal to the mean caliper-measured radius of all three needles. The perimeter (p) of each needle was calculated according to the following equation:

\[
p = 2\beta \pi r_{\text{mean}} + 2r_n
\]

where \(r_{\text{mean}} \) = the mean needle radius, \(2/3 \pi r_{\text{mean}} \) = the length of the curved surface of each needle, \(r_n \) = the radius of each individual needle, and \(2r_n \) = the length of the sides of each pie slice. The surface area for the foliage enclosed in the chamber was calculated by summing the perimeter of each needle and multiplying by the 3 cm length of the needle enclosed in the cuvette. The needle segments placed in the chamber were marked, excised following the measurement, dried at 60°C for 72 h or until no further loss of mass was recorded, and used to calculate a mass per unit area.

Statistical methods

The relationship between MBO emission and ambient temperature was analyzed by linear regression using the SAS procedure GLM (SAS 1990). Differences in MBO production capacity and photosynthetic rate due to needle age were tested using ANOVA. Differences in the shape of the light and temperature response curves for photosynthesis and MBO emission were examined using the Kolmogorov-Smirnov test (SYSTAT 1997). The effect of water stress on MBO production capacity was investigated by comparing the slopes of the regression lines describing the relation-
ship between ambient temperature and MBO production capacity at the Tower and Watered sites and by ANCOVA using the GLM procedure of SAS. The effect of water stress alleviation was analyzed using ANOVA.

RESULTS

Instantaneous responses

Methylbutenol emission and photosynthetic rates increased with light intensity, and neither process showed light saturation even at PPFD 2000 μmol m⁻² s⁻¹ photons (Fig. 1A). Despite this similarity in instantaneous (time scale of seconds to minutes in duration) response to light, MBO emission and photosynthesis responded very differently to temperature. In response to increasing temperature, both photosynthesis and stomatal conductance declined steadily; however, MBO emission increased exponentially reaching a maximum around 40°C (Fig. 1B). Above this temperature MBO emission rates declined precipitously and failed to equilibrate at a constant emission rate. In addition, the shape of the light and temperature response curves for both MBO emission and photosynthesis in all three needle age classes were identical (Fig. 2A, B; P > 0.05 for all comparisons).

Seasonal patterns

Over the course of the season, stomatal conductance and photosynthesis showed progressive declines at both the Tower and Watered sites (Fig. 3A, B). The magnitude of these declines was greater at the unwatered Tower site and illustrates that the watering treatment prevented some of the water stress experienced by trees at the Tower site. In contrast to the pattern of declines seen for stomatal conductance and photosynthesis, MBO production capacity exhibited a unimodal response. MBO emissions were initially very low compared with photosynthetic rate, increased to a peak in July, and subsequently declined throughout the remainder of the season (Fig. 4A, B). Similar responses of MBO emission were seen at both the Tower site and Watered site (Fig. 5A).

![Figure 1](image1.png)
![Figure 2](image2.png)

Fig. 1. Response of methylbutenol (MBO) emission (circles), photosynthesis (squares), and stomatal conductance (triangles) to (A) light intensity (in micromoles of photons per square meter per second) or (B) temperature. Temperature was held constant at 30°C for light response curves, and light was held constant at a light intensity of 1500 μmol photons·m⁻²·s⁻¹ for temperature response curves. Data were normalized by dividing each light response measurement by the value obtained at 1500 μmol photons·m⁻²·s⁻¹ light intensity and each temperature response measurement by the value obtained at 30°C.

Fig. 2. Response of MBO emission to (A) light intensity and (B) temperature among current flush needles (circles), 1-yr-old needles (squares), and 2-yr-old needles (triangles). Temperature was held constant at 30°C for light response curves, and light was held constant at a light intensity of 1500 μmol photons·m⁻²·s⁻¹ for temperature response curves. Data were normalized as in Fig. 1.
Needle age

Needle age had pronounced effects on the physiological capacities of both MBO production and photosynthesis. Both photosynthetic capacity and MBO production capacity declined with needle age, with the strongest declines coming between the 1-yr-old and 2-yr-old needles (Fig. 4A, B; ANOVA $F_{2,14} = 39.28$, $P = 0.0001$; $F_{2,14} = 25.9$, $P = 0.0001$). These effects of needle age were independent of the ambient temperatures at which measurements were made.

Relationship between photosynthetic capacity and MBO production capacity

Examination of the seasonal patterns of photosynthetic capacity and MBO production capacity in Fig. 4A and B shows that photosynthesis and MBO production capacity have similar trajectories (declines) at the end of the season. However, the behavior of these two processes is very different at the beginning of the season, as illustrated by the low MBO production capacities coupled with high photosynthetic rates in all needle age classes present during the first sampling period at the Tower site (Fig. 4A, B).

Replotting the data contained in Fig. 4 initially showed a putatively strong positive relationship between mean photosynthetic capacity and MBO production capacity when viewed over the entire season (Fig. 6A, Table 1). However, this relationship was due to differences in photosynthetic capacity and MBO production capacity between different needle age classes (Fig. 6A, Table 1). When each age class of needles was considered separately, there was no relationship between photosynthesis and MBO production within a sampling period (Fig. 6B, all $P > 0.05$, $r^2 < 0.36$). Similarly, for a single needle age class, there was no relationship between photosynthesis and MBO production within a sampling date or across all sampling dates (Fig. 6C, all $P > 0.05$, $r^2 < 0.51$).

Ambient temperature and MBO production capacity

Although the trajectory of seasonal changes in MBO production capacity differed slightly between the Tower and Watered sites, in both cases MBO production capacity closely followed seasonal changes in ambient temperature (Fig. 5A, Table 2). Daily measurements of MBO production capacity taken on a single tree at 1700 hours over a 2-wk period also revealed a close tracking of ambient temperature by MBO production capacity (Fig. 5B, Table 2). A more detailed analysis of the relationship between MBO basal emission capacity and daily maximum temperature was performed using lin-
FIG. 5. (A) Pattern of daily maximum temperature (diamonds) and mean MBO basal emission rate per sampling period at the Tower site (circles) or Watered site (squares; means ± 1 SD). (B) Pattern of daily maximum temperature (diamonds) and MBO emission capacity (circles) at the Tower site. Measurements were made at 30°C and light intensity of 1500 μmol photons·m⁻²·s⁻¹.

Effects of water stress

Investigation of potential effects water stress might have had on MBO production capacity was complicated by the strong influence of ambient temperature. We evaluated whether water stress influenced MBO production capacity using an ANCOVA design in which ambient temperature (daily T_{max}) was treated as a covariate when comparing the Tower site and the Watered site. Similar results were obtained when daily maximum, minimum, or mean temperature was used as the covariate. Slopes of the response of MBO to T_{max} showed no differences between sites (Fig. 7, Table 2; homogeneity of slopes comparison $F_{1,99} = 0.02, P = 0.8849$). Similar relationships between photosynthesis and ambient temperature were not observed (linear regression $P > 0.05$).

TABLE 1. Regression parameters obtained at the Tower site in the central Sierra Nevada Mountains, California, USA.

<table>
<thead>
<tr>
<th>Needle age class</th>
<th>Sampling days</th>
<th>Slope</th>
<th>Intercept</th>
<th>r^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>174–183</td>
<td>0.007</td>
<td>0.292</td>
<td>0.519</td>
<td>0.012</td>
</tr>
<tr>
<td>0</td>
<td>208–221</td>
<td>0.006</td>
<td>2.939</td>
<td>0.786</td>
<td>0.306</td>
</tr>
<tr>
<td>1</td>
<td>239–253</td>
<td>0.004</td>
<td>6.374</td>
<td>0.124</td>
<td>0.647</td>
</tr>
<tr>
<td>2</td>
<td>279–287</td>
<td>0.004</td>
<td>2.320</td>
<td>0.364</td>
<td>0.396</td>
</tr>
</tbody>
</table>

Notes: Photosynthetic capacity and methylbutenol (MBO) production capacity were related through the linear model $y = ax + b$, where $y =$ MBO production capacity (in micromoles of carbon per gram per hour) and $x =$ photosynthetic rate (in micromoles of carbon per gram per hour). Regressions were run for all needle age classes separately and together using mean measurements for each of the four sampling periods. Sampling periods correspond to those shown in Fig. 4A, B.
Table 3. Stomatal conductance, photosynthesis, and methylbutenol (MBO) emission capacity of drought-stressed Pinus ponderosa seedlings before and after late-season re-watering.

<table>
<thead>
<tr>
<th>Watering treatment</th>
<th>Stomatal conductance (mol·m⁻²·s⁻¹)</th>
<th>Photosynthesis (µmol·m⁻²·s⁻¹)</th>
<th>MBO flux (nmol·m⁻²·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>Control</td>
<td>0.013 ± 0.002</td>
<td>0.020 ± 0.008</td>
<td>1.50 ± 0.42</td>
</tr>
<tr>
<td>Alleviation</td>
<td>0.033 ± 0.013*</td>
<td>0.096 ± 0.027*</td>
<td>3.81 ± 0.91*</td>
</tr>
</tbody>
</table>

Notes: Pre-alleviation measurements took place on 20 August 1999 and post-alleviation measurements took place on 27 August 1999. Alleviation treatment seedlings received 45 L of water per day for 7 d prior to remeasurement. Control seedlings remained unwatered through this time. Significant differences between measurement periods are indicated with asterisks (P < 0.05).

With the effect of temperature factored out, there were no differences in MBO production capacity at either site at the beginning of the season (ANOVA $F_{1,27} = 0.77, P = 0.3873$) when stomatal conductances were comparable (Fig. 3, ANOVA $F_{1,28} = 2.59, P = 0.1188$), and no differences in MBO production capacity at the end of the season (ANOVA $F_{1,25} = 0.44, P = 0.5145$) when stomatal conductance at the Tower site had declined by 66% (from 0.09 mol H₂O·m⁻²·s⁻¹ to 0.03 mol H₂O·m⁻²·s⁻¹) and was 60% lower than at the Watered site (ANOVA $F_{1,28} = 84.18, P = 0.0001$).

The possibility that rapid changes in water stress might cause a sudden change in MBO production capacity irrespective of the temperature response was addressed in the 1999 water-stress alleviation experiment. These data revealed that despite a doubling of photosynthesis, from 3.81 µmol·m⁻²·s⁻¹ to 7.63 µmol·m⁻²·s⁻¹ ($F_{1,6} = 23.11, P = 0.003$), and a tripling of stomatal conductance, from 0.033 mol·m⁻²·s⁻¹ to 0.096 mol·m⁻²·s⁻¹ ($F_{1,6} = 18.2, P = 0.0053$), following the re-watering of drought-stressed plants, no change in MBO production capacity was observed (Table 3; $F_{1,6} = 0.00, P = 0.9843$).

We also note that the stomatal conductances and photosynthetic rates of control plants were initially lower than those of the water stress alleviation treatment plants prior to watering (Table 3) and lower than those observed at the end of the season at the Tower site in 1998 (Fig. 3A, B). This suggests that the control plants may have been slightly more water stressed than either the alleviation treatment or Tower site plants. Yet, despite these low stomatal conductances and photosynthetic rates, the control plants had higher MBO emission rates (Table 3). This might possibly hint that at levels of water stress greater than those observed in 1998 at the Tower site, MBO production capacity might increase. However, from these data it is unclear whether the higher MBO pre-alleviation production capacities of the control plants are due to water stress or variability among the trees sampled.

Discussion

Instantaneous responses

The instantaneous response of MBO emission to light and temperature was similar to that previously observed for isoprene in sun-adapted leaves (Sharkey et al. 1996, Harley et al. 1997, Lerdau and Throop 2000), but differed somewhat from that observed by Harley et al. (1998) for MBO. Harley et al. (1998) observed photosynthesis to saturate at a PPFD of 1000 µmol·m⁻²·s⁻¹ and MBO emission to continue to increase above a PPFD of 1500 µmol·m⁻²·s⁻¹ in ponderosa pine. However, we found that photosynthesis...
Seasonal patterns

The seasonal pattern of MBO emission capacity observed in this study is consistent with recent studies on the seasonality of isoprene emission (Sharkey and Loreto 1993, Monson et al. 1994, Schnitzler et al. 1997, Goldstein et al. 1998, Sharkey et al. 1999). However, whereas the leaves of deciduous isoprene-emitting species do not begin to emit until they have fully expanded, pine needles show strong emission of MBO while they are still expanding. The time of onset for MBO emission has yet to be determined; however, MBO emission was observed in expanding needles when they were <3 cm long (2–3 wk old; <20% of full expansion). It is interesting to note that the young needles of two isoprene-emitting conifers, Norway spruce (Picea abies) and Colorado blue spruce (Picea pungens glauca), produce isoprene before they have fully expanded. This may indicate that different mechanisms regulate the developmental onset of MBO emission or isoprene emission in conifers and angiosperms.

Regulation of MBO production capacity

Temperature.—While the pattern of changes in MBO production capacity was strongly correlated with ambient temperature over the season and day to day (Table 2), measurements of photosynthesis did not correlate with ambient temperature ($F_{1,60} = 0.084, P = 0.7731, r^2 = 0.0014$). Furthermore, photosynthesis proved to be a poor predictor of MBO production capacity within an age class of needles sampled over the season (Fig. 6C, Table 1) or across needle age classes within a single sampling date (Fig. 6B, Table 1). Thus, changes in MBO emission capacity do not appear mediated directly through changes in leaf level photosynthetic rate. Rather, it appears that ambient temperature regulates MBO production capacity.

The mechanism by which changes in temperature induce changes in MBO production capacity is not currently known; however, studies of isoprene regulation have shown that seasonal changes in isoprene emission are best explained by seasonal changes in isoprene synthase content (Monson et al. 1992, Kuzma and Fall 1993, Schnitzler et al. 1997, Lehning et al. 1999). We suggest that a similar process occurs in MBO-producing pines and that temperature regulates the content of MBO synthase within the chloroplast.

Water stress.—Although the levels of water stress achieved in these experiments (Fig. 3A) affected photosynthetic metabolism (Fig. 3B), there is no evidence that MBO emission was influenced either directly by changes in water stress (Table 3) or indirectly through the changes in photosynthetic metabolism (Fig. 6A–C, Table 1). Similarly, the sudden alleviation of water stress did not result in changes in MBO production capacity (Table 3).

In contrast to these results, several workers have shown that water stress and the alleviation of stress influence the emission of isoprene (Sharkey and Loreto 1993, Fang et al. 1996, Lerdau et al. 1997). This difference may be explained by the fact that, although the degree of water stress experienced by the end of the growing season in 1998 was pronounced, even the most water-stressed control treatment trees in the 1999 study had not become sufficiently stressed to undergo midday stomatal closure. It is possible that MBO emission might change under conditions of more severe water stress.

Photosynthesis.—Although MBO emission follows photosynthesis very closely in response to light (Fig. 1A) and MBO production capacity corresponds to changes in photosynthetic capacity over most of the season (Fig. 4A, B), this does not result from photosynthesis regulating MBO production capacity. Instead, this relationship arises because plant water stress (water availability) and ambient temperature changed in parallel in 1998.
The unusually wet winter and spring of 1998 resulted in the first set of measurements being taken when water availability was at its seasonal peak. Following the end of the rainy season the summer drying cycle ensued and continued through the end of the sampling periods. This seasonal drying trend is reflected in the pattern of declines in stomatal conductance seen at the Tower site (Fig. 3A) and resulted in matching declines in photosynthesis (Fig. 3B). Concurrent with the cessation of rains, ambient temperature began to rise such that by the first sampling period at the Watered site and the second sampling period at the Tower site, temperatures were at their seasonal maxima. Subsequently, temperatures declined over the rest of the season following a pattern closely matching that of water availability seen in stomatal conductance. As a result, with the exception of the measurements taken at the Tower site in the first sampling period, there was a close correspondence between photosynthetic capacity and MBO emission capacity.

Fig. 6A illustrates that any correlation seen between mean photosynthesis and MBO production capacity is due to differences among needle age classes. Trees were also sufficiently variable in their photosynthetic and MBO production capacities that within an age class there was no relationship between photosynthesis and MBO production capacity at any date or across all ages within a sampling date (Fig. 6B, C). The fact that no relationship exists between photosynthetic capacity and MBO production capacity, despite the close tracking of MBO emission and photosynthesis in response to light, can be explained in the same way as the failure of MBO emission to track photosynthesis in response to short-term (instantaneous) changes in needle temperature (previously described). Since the flux of carbon through the MBO synthesis pathway is tiny relative to the flux of carbon through the Calvin cycle, MBO synthesis is unlikely to become substrate limited unless photosynthetic rates become very small.

Needle age. — Both photosynthesis and MBO emission declined with needle age; however, the basis for these declines is still unclear. In many trees, leaves adapt to their light environment, and this can result in reduced photosynthetic capacities of leaves in shaded portions of the canopy (Ellsworth and Reich 1993, Harley et al. 1996). Reduced isoprene emissions have also been reported from shade-adapted leaves (Harley et al. 1996, 1997). However, such a shade acclimation response does not seem likely for the observed declines in MBO emission, since the canopy architecture of ponderosa pine admits considerable amounts of light deep into the canopy; and 2-yr-old needles were observed to receive full sun during a portion of the day. The observation that all needle age classes showed similar light response curves for both photosynthesis and MBO emission also suggests that leaf physiology was similar across needle ages (Fig. 2A). Given the strong influence of ambient temperature has on MBO production capacity, one wonders if older needles located deeper in the canopy could be in a cooler microenvironment than the younger needles. But this too seems unlikely given that needles track air temperature very closely and needle boundary layer conductances are small and unlikely to lead to much temperature increase from solar insolation.

Ecological importance.— During warm dry periods, MBO emission may constitute a sizable proportion of the carbon assimilated by the plant. This is due to the divergent responses of instantaneous MBO emission and photosynthetic rates to temperature, combined with the observation that MBO production capacities remain up-regulated despite limitations to photosynthesis resulting from water stress. Over the summer of 1998, MBO emission at the Tower site averaged 0.5% of net assimilation (NPP) but peaked at 1% from age 1 needles in July. This carbon loss measured at the leaf level is in good agreement with canopy-level estimates of non-CO2 carbon fluxes from this site, based on work by Schade and Goldstein (2001) showing that oxygenated VOCs (of which MBO made up ~40%) made up a mean of 1.3% of net ecosystem carbon exchange (NEE) at this site. Additionally, oxidation of MBO has been shown to account for as much as 63% of the acetone budget in areas containing MBO-emitting trees (Goldstein and Schade 2000). This, as well as the potential impact MBO may have on regional ozone production (Harley et al. 1998, Lamanna and Goldstein 1999), has led to attempts to model MBO emission. An important outcome of this study is that for the purposes of predicting ecosystem MBO inputs, the impact of water stress on photosynthetic metabolism can be ignored. Ambient temperature, however, is an important factor to include.

Although MBO emission by ponderosa pine may represent a carbon cost of only a small percentage of photosynthesis, compared to other secondary compounds produced by ponderosa pine, this cost is quite large. For example, based on MBO fluxes measured in this study and fluxes reported for monoterpenes (Lerdau et al. 1994, Lerdau and Gershenzon 1997) the amount of carbon allocated to MBO is 2–10 times greater than the amount allocated to monoterpene production in ponderosa pine. This large investment of energy into MBO production, coupled with the fact that MBO production capacity is regulated independently of photosynthesis and is not a fixed percentage of carbon assimilation, suggests that MBO may serve an adaptive function in emitting pines.

The large effect of temperature upon instantaneous emission rate and the strong effect of ambient temperature on emission capacity suggest that this role is associated with plant response to high temperatures. Such a thermostolerance hypothesis has been suggested for isoprene (Sharkey and Singsaas 1995, Singsaas et al. 1997), and given the similar metabolic origin, cellular location of synthesis, and ecological regulation.
between isoprene and MBO, it would be surprising if MBO did not also serve a similar function.

Acknowledgments

This work was made possible by a NASA Earth System Science Fellowship to D. W. Gray, a contract with the California Air Resources Board (award 98-328), and a grant from the University of California Agricultural Experiment Station to A. H. Goldstein. M. T. Lerdau was supported during manuscript preparation by a Ballard Fellowship from Harvard University. We thank the Blodgett Forest Research Station staff for their invaluable logistical support and Sierra Pacific Industries for allowing us to carry out research on their property. We especially thank Dave Rambeau for construction and maintenance of the watering system, Robert Heald for aid in selecting field sites, Russell Seufert for the use of the carpentry shop as summer research space for D. W. Gray, and Jeanne Panek and Gunnar Schade for many stimulating discussions. D. W. Gray also thanks the Forest Technicians for their innumerable contributions. We also thank Fakhri Bazzaz, Thomas Sharkey, Kenneth Raffa, and an anonymous reviewer for constructive comments on the manuscript.

Literature Cited

SYSTAT. 1997. SYSTAT version 7. 0.1 for Windows. SPSS, Chicago, Illinois, USA.