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Abstract. Field studies have shown that elevated C02 can cause increased forest growth 
over the short term (<6 years) even in the face of N limitation. This is facilitated to some 

degree by greater biomass production per unit N uptake (lower tissue N concentrations), 
but more often than not, N uptake is increased with elevated C02 as well. Some studies 

also show that N sequestration in the forest floor is increased with elevated C02. These 

findings raise the questions of where the "extra" N comes from and how long such growth 
increases can continue without being truncated by progressive N limitation (PNL). This 

paper reviews some of the early nutrient cycling literature that describes PNL during forest 

stand development and attempts to use this information, along with recent developments 
in soil N research, to put the issue of PNL with elevated C02 into perspective. Some of 

the early studies indicated that trees can effectively "mine" N from soils over the long 
term, and more recent developments in soil N cycling research suggest mechanisms by 

which this might have occurred. However, both the early nutrient cycling literature and 

more recent simulation modeling suggest that PNL will at some point truncate the observed 

increases in growth and nutrient uptake with elevated C02, unless external inputs of N are 

increased by either N fixation or atmospheric deposition. 
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Introduction 

Nitrogen is unique among nutrients in that it has no 

soil mineral source, is ultimately derived completely 

from atmospheric inputs, and rarely accumulates to any 

significant amount in ionic forms on soil exchange 

complexes. In contrast to other nutrients, whose soil 

ionic pools may well exceed vegetation content, soil 

mineral N pools are nearly always much smaller than 

the annual uptake of plants; therefore soil mineral N 
* 

pools must turn over many times per year to meet plant 

needs. For all of these reasons, N is almost completely 

tied to ecosystem C pools (Vitousek et al. 1979, Paul 

and Clark 1989, Johnson 1992, Shaver et al. 1992). 

Thus, it is not surprising that N is frequently the most 

growth-limiting nutrient or that ecosystem responses 

to elevated C02 are intimately tied to N responses (e.g., 

Shaver et al. 1992). 

The major N cycling processes have been known for 

decades; however, quantification of these processes, es 

pecially the gaseous phases, has proven to be very dif 

ficult, leaving large uncertainties in forecasting long 

term N budgets (e.g., Binkley et al. 2000). The N cycle 
is especially relevant to experiments with elevated C02, 

including those at the stand level using free-air C02 

(FACE) technology. Many of these studies have shown 

that growth responses and increased aboveground N 

Sequestration can occur and persist over the short term 

even in the face of N limitation (Johnson et al. 1997, 

2003a, 2004, Curtis et al. 2000, Finzi et al. 2002, 2004, 

Hamilton et al. 2002). The obvious question is how 

long such growth increases can continue before being 
truncated by N limitation. 

Thus, the prospect of progressive N limitation (PNL) 
with elevated C02 has been raised (Luo et al. 2004) 

and is highlighted in this Special Feature in Ecology. 
The concept of PNL during forest stand development 
was introduced decades ago and is well-established in 

the literature on forest nutrient cycling (Rennie 1955, 

Ovington and Madgwick 1959, Ovington 1962, Heil 
man 1966, Cole 1981, Turner 1981, Gholz et al. 1985). 

A review of these older concepts and the results sup 

porting or negating them is warranted in the present 
context of elevated C02 response. The purpose of this 

paper is to review the older literature describing PNL 

in forest ecosystems; to describe more recent and rel 

evant results on N cycling in soils, including some that 

challenge some of the older paradigms; and to attempt 

to relate these results to the question of PNL devel 

opment in ecosystems subjected to elevated C02. 

Review of Progressive Nutrient Limitation 

during Forest Stand Development 

Chronosequence studies and calculations 

Among the first to suggest the possibility of increas 

ing nutrient limitation with stand development was 

Rennie (1955), who noted that the nutrient demands of 
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plantation forests growing on Calluna soils in England 

could not be supported without soil nutrient degrada 
tion unless supplemented by fertilizer. Ovington (1959) 

noted the same basic patterns in a chronosequence 

study of Scots pine (Pinus sylvestris L.) in England. 

Along with the increase in tree biomass, he also found 

a steady buildup of forest floor mass and nutrient con 

tent over 55 years, and a much reduced role of under 

story vegetation in nutrient uptake after crown closure. 

Ovington (1959) also calculated that conventional tim 

ber harvesting (bole only) would remove minimal nu 

trients from the ecosystem. Cole et al. (1968) and Ges 

sel et al. (1973) calculated that soil N reserves appar 

ently would have to be tapped in order to support ob 

served N accumulations in tree biomass and forest floor 

in Douglas-fir (Pseudotsuga menziesii) forests in Wash 

ington State, USA. 

In their classic study of forest stand development, 
Switzer and Nelson (1972) put these findings into a 
new perspective and identified three major phases of 

stand development in a loblolly pine (Pinus taeda L.) 
plantation in Mississippi: a phase of nutrient accu 

mulation, prior to canopy closure (when trees are ac 

cumulating nutrient-rich foliar biomass, understory is 

often dominant, net annual nutrient increment in bio 

mass is very high, forest floor is often accumulating, 
and recycling via the litterfall-decomposition pathway 
is minimal); a phase of nutrient cycling after canopy 

closure (during which litterfall matches new foliage 

growth, understory declines, foliar biomass stabilizes, 

net annual increment decreases sharply, and the annual 

uptake of nutrients necessary to supply growing tissues 

is met largely by recycling); and a stage of decline 

(where senescence ensues and both uptake and incre 

ment decline). A schematic representation of this se 

quence is shown in Fig. 1A. Their calculations sug 

gested that by year 20 in the loblolly pine plantation 
studied, the annual uptake of nutrients by trees was 

satisfied almost completely by recycling, both between 

the plant-soil system and within the plant, requiring 
little uptake from the soil. Noting the contribution of 

internal cycling within the plant (hereafter referred to 

as translocation) to the annual nutrient requirements 
for new growth (up to 50% for P and 39% for N), they 
proposed an expansion of the conceptual model of nu 

trient cycling in forests held at the time. Earlier con 

ceptual models of nutrient cycling in forests (Remezov 

1959, Curlin 1970) recognized two components of bio 

geochemical cycling: (1) a geochemical component 
that was external to plant-soil system and included 

atmospheric inputs and leaching, and (2) a biological 

component, internal to the plant soil system. Switzer 

and Nelson (1972) proposed a three-component model: 

geochemical cycling, as in (1); biogeochemical cy 

cling, as in (2); and biochemical cycling, which con 

sisted of nutrient transfers within the plant. 
Later chronosequence studies by Miller et al. (1979), 

Turner (1981), and Gholz et al. (1985) in plantation 
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Fig. 1. Schematic representation of changes in nutrient 

pools during stand development in (A) a warm system where 
the forest floor reaches steady state, and (B) in a cold system 

where the forest floor continues to accumulate. During phase 
I, prior to canopy closure, nutrients accumulate in foliar bio 

mass, understory is often dominant, net annual nutrient in 
crement in biomass is very high, forest floor is often accu 

mulating, and recycling via the litterfall-decomposition path 
way is minimal. During phase II, after canopy closure, lit 
terf all matches new foliage growth, understory declines, 
foliar biomass stabilizes, net annual increment decreases 

sharply, and the annual uptake of nutrients necessary to sup 

ply growing tissues is met largely by recycling. The forest 
floor may reach steady state during phase II in warm eco 

systems. During phase III, senescence ensues, and both up 
take and increment decline. Forest floor accumulation may 
escalate because of increased woody litterfall associated with 
tree mortality. 

forests revealed patterns similar to those noted by Swit 

zer and Nelson (1972). The latter authors also found 

that the rates of accumulation of nutrients in tree bio 

mass and forest floor well exceeded rates of atmo 

spheric deposition and concluded that either N fixation 

or soil sources were needed to balance the books. Miller 

et al. (1979) described the nutrient cycles of Corsican 

pine (Pinus nigra var. mar?tima), with and without fer 

tilization, growing on coastal sands in Scotland where 

the pines were becoming increasingly nutrient deficient 

with age. Miller et al. (1979) expanded and refined the 
biochemical concept posed by Switzer and Nelson 

(1972) by defining three kinds of nutrient pools within 
the tree: a nonmobile, or structurally bound pool; a 

mobile pool, consisting of recent root and foliar uptake 
and includes temporary seasonal storage; and a poten 

tially mobile pool that can be used to make up for an 

inadequate supply from the mobile pool. Miller et al. 
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(1979) described how nutrient transfers between these 

pools could account for the ability of coniferous trees 

to survive on very nutrient-poor soils and their pro 

longed responses to fertilization. 

In a chronosequence study of Douglas-fir (Pseudot 

suga menziesii Mirb. Franco.) stands in Washington 

State, USA, Turner (1981) found many of the same 

patterns found by Ovington (1959) and Switzer and 
Nelson (1972). Like Switzer and Nelson (1972), Turner 
noted reduced understory biomass and nutrient content 

after crown closure. Unlike Switzer and Nelson (1972), 

however, he found a steady increase in forest floor mass 

and nutrient content over 95 years, with no sign of 

reaching a steady-state condition. This scenario is de 

picted in Fig. IB. Turner (1981) calculated that an av 

erage of nearly 10 kg N-ha-1-yr_1 over and above at 

mospheric inputs was needed from either fixation or 

soil mineralization to account for the observed increas 

es in tree and forest floor N content. Turner (1981) had 

no measures of dry N deposition. At a later time when 

pollutant inputs were probably greater than when Turn 

er did his study, very detailed estimates provided val 

ues averaging 2.1 kg N-ha_1-yr-1 at the same site (John 

son and Lindberg 1992), which were insufficient to 

account for the apparent N deficit. Turner (1981) pre 

sumed that the trees in the older stands had to rely on 

N uptake from the forest floor to a greater extent than 

trees in the younger stands, a speculation supported by 

other studies in the region that showed increased root 

ing in forest floor during later stages of forest stand 

development (Kimmins and Hawkes 1978, Grier et al. 

1981, Vogt et al. 1983). Turner (1981) found that forest 
floor accumulation was apparently exacerbated by the 

inhibitory effects of cooler temperatures (a full 8?C 

lower in the older than in the youngest stand, presum 

ably because of more insulation by thicker litter) and 

higher C:N ratio litterfall in the older stands. The higher 

C:N ratio of litter in the older stands was attributed to 

increased C:N ratio of needle litterfall as well as a 

greater proportion of woody tissues in litterfall. The 

higher C:N ratio in needle litterfall was due to increased 

internal translocation with age, a response that he hy 

pothesized was due to the increasing N limitation with 

age (progressive N limitation). In a chronosequence of 

slash pine (Pinus elliottii Eng.) stands in Florida, USA, 

Gholz et al. (1985) found patterns of biomass and nu 

trient accumulations, decomposition, and internal 

translocation that were very similar to those found by 

Turner (1981), and they also found an apparent decline 

in soil total N and extractable P with stand age. 

The N imbalance/PNL issue is not limited to plan 

tation forests. Heilman (1966) found increasing N de 

ficiency with advancing succession in black spruce (Pi 

cea mariana P. (Mill.)) in interior Alaska, USA. He 

found that as the moss layers thickened in these stands, 

the soils became increasingly cold, causing the per 

mafrost layer to migrate upward, retarding decompo 

sition and exacerbating the N deficiency. When Bor 
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Fig. 2. Changes in nitrogen content over time in a loblolly 

pine forest at Calhoun, South Carolina (left), a deciduous 

forest at Oak Ridge, Tennessee (middle), and a loblolly pine 
forest at Oak Ridge, Tennessee. Data are from Richter and 

Markewitz (2001), Johnson and Todd (1998), and Johnson et 

al. (2003). 

mann et al. (1977) calculated how much N in excess 

of atmospheric deposition would be needed to account 

for the increments in biomass and forest floor, they 

estimated an imbalance of ?14 kg N-ha_1-yr_1 for an 

aggrading hardwood forest in New Hampshire, USA. 

They assumed that this imbalance was met by N fix 

ation, but it also could have been due to nitrogen re 

moval from the mineral soil. Chestnut et al. (1999) 

calculated an N imbalance of ?8-20 kg N-ha_1-yr_1 for 

a late-successional forest in Puerto Rico, which they 

assumed could be accounted for by uptake from soils 

or N fixation. 

Resampling studies 

Wells and Jorgensen (1975) reviewed the results of 

some plantation studies involving loblolly pine in 

North and South Carolina, USA. They noted high rates 

of biomass and N accumulation in both vegetation and 

forest floor components over the first 16 years (39 kg 

N-ha_1-yr_1), and found that soil N reserves were de 

pleted by an amount very close to this (38 kg 

N-ha_1-yr_1). They speculated that this apparent "min 

ing" of soil N was made possible by rhizosphere mi 

crobial activity in the pines. Richter et al. (2000) and 

Richter and Markewitz (2001) summarized the later 

results from Calhoun Forest (one of the sites studied 

by Wells and Jorgensen [1975]) over a 40-year period, 

putting it into historical perspective with respect to 

previous land use in cotton farming. They noted that 

the combined N increment in biomass (366 kg/ha) and 
forest floor (740 kg/ha), a total of 1106 kg/ha, was 

largely compensated by declines in soil N (-823 kg/ 
ha) over 40 years of stand development (Fig. 2, left). 
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They further noted that most of the soil depletion oc 

curred over the first 25 years of stand development 
when demands from the vegetation were highest. After 

age 30, there were no further increments in tree biomass 

or N content because mortality equaled increment. For 

est floor mass and N increment continued to increase 

through age 40, however, perhaps partly due to fire 

suppression. 
Several long-term resampling studies near Oak 

Ridge, Tennessee, USA, have taken place over the last 

three decades, and all have produced different results. 

All took place within a relatively small geographic area 

(2-4 km apart) with similar climate and soils (Ultisols 
derived from dolomite). Studies in mature deciduous 

forests on Walker Branch Watershed over a 21-year 

period (1972-1993) showed either stable or declining 
soil C and N in various plots (Trettin et al. 1999). In 

contrast, soils in a nearby naturally regenerating de 

ciduous forest showed inexplicably large increases in 

soil C and N over a 15-year period (1980-1995) fol 

lowing harvesting (Johnson and Todd 1998) (Fig. 2, 
middle). In the latter study, ecosystem N contents 

seemed to increase at a rate approaching 100 kg 

N-ha_1-yr-1, most of which accumulated in the soil. 

This occurred in the absence of any significant N-fixing 

vegetation and with an atmospheric deposition rate on 

the order of 10 kg N-ha_1-yr_1 (Johnson and Todd 

1998). Although we remained skeptical about the mag 

nitude of these soil N increases (see Binkley et al. 

[2000] for a discussion of soil N changes in this study 
and many others), extensive quality assurance checks 

failed to reveal any problems that could account for 

them, and thus they were duly reported. In yet another 

contrast, Johnson et al. (2003?>) found a slight, non 

significant decline in soil C and N over the first 18 

years of growth in a nearby loblolly pine plantation 

(Fig. 2, right). They estimated an average annual N 

accumulation in trees and forest floor of ?20 kg 

N-ha_1-yr_1, whereas N deposition at a nearby site was 

on the order of 10 kg N-ha_1-yr-1. They calculated that 

the soil N depletion of 10 kg N-ha_1-yr_1 needed to 

balance the budget could have occurred and gone un 

detected in this ecosystem. This collection of studies 

showed that patterns of ecosystem N development can 

vary enormously within a very small geographic re 

gion, depending upon vegetation and site history; over 

generalizations are hazardous. 

Foster et al. (1995) demonstrated the value of long 
term resampling studies by comparing chronosequ 
ence-based estimates with resampling over time for N 

budgets in jack pine (Pinus banksiana) forests in On 
tario, Canada. They found that the chronosequence 
based estimates of N accumulation in biomass and for 

est floor were much lower than real-time measurements 

over 21- to 23-year intervals. In contrast to the chron 

osequence studies by Turner (1981), Foster et al. ( 1995) 
found that the mineral soil supplied over half of the 
total N uptake at age 50. They found no effect of stand 

age on decomposition rate, no pattern of increased re 

liance of the forest floor for N sources of uptake over 

time, and no evidence of a slowdown in N uptake and 

cycling over time in this study. 
On a whole-ecosystem level, the studies cited in the 

previous sections leave little doubt that the accumu 

lations of N in living and dead biomass often exceed 

known inputs of N, and in many cases this has led to 

severe nutrient deficiencies with stand age in young, 

rapidly growing forests with low nutrient inputs. This 

does not mean that PNL will proceed indefinitely, how 

ever: in overmature stands, one could well expect great 

ly reduced uptake and possible increases in nutrient 

availability and leaching, especially if atmospheric de 

position were high (e.g., Vitousek and Reiners 1975, 

Johnson et al. 1991). Also, measures of nutrient avail 

ability in soils may not necessarily reflect the same 

patterns as total nutrient contents in soil, litter, and 

vegetation. Ryan et al. (1997) concluded that there were 

no general patterns of nutrient availability with stand 

age, based upon a review of the literature on changes 
in leaching, resin bag nutrient retention, mineralizeable 

N by incubation, and 15N pool dilution with stand age. 

Griffiths and Swanson (2001) found the typical in 
creases in forest floor mass (and presumably N content) 
over time, but they found no pattern in available N 

(soil mineral N or mineralizable N) in a Douglas-fir 
forest. 

Process-level studies of nutrient cycling in forests 

Despite the obvious logistical problems and scaling, 
some process-level studies of nutrient cycling in forests 

are relevant to the issue of PNL and therefore merit 

review here. Specifically, studies on translocation and 

decomposition have been conducted in situ within a 

forest stand. Studies of uptake processes have been 

conducted in a greenhouse setting only, and will not 

be reviewed here. 

Translocation.?In a classic experiment on translo 

cation and its response to nutrient availability, Turner 

(1977) described an experiment in which he stressed 

Douglas-fir trees for N on the one hand by adding sugar, 

sawdust, and non-nitrogen nutrients to stimulate mi 

crobial competition; on the other hand he provided im 

proved and even luxuriant N supplies by adding fer 

tilizer. The N-stressed trees showed increased trans 

location and litterfall during the first year after this 

treatment as new growth requirements required the tap 

ping of N stores in older foliage, causing them to pre 

maturely senesce. In the fertilized plots, translocation 

and litterfall were reduced as the trees stored the added 

N in old foliage and relied more on external sources 

of N for the new growth requirements (Fig. 3). 

Nambiar and Fife (1991) directly challenged Turn 
er's (1977) conclusions, criticizing his assumptions 

(i.e., that older foliage concentrations were equal to 

new foliage concentrations when new) and citing many 

examples, both from their own work and that of others, 
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Fig. 3. Litterfall biomass and N flux in Douglas-fir forest plots treated with (from left to right): carbohydrates + nutrients 

(C + nutrients), carbohydrates alone, no treatment, and urea-N at either 220 kg/ha or 880 kg/ha. The figure is adapted from 
Turner (1977). 

in which translocation is greater in trees with better N 

status. However, Nambiar and Fife (1991) as well as 

others (e.g., Chapin and Kedrowki 1983, Birk and Vi 

tousek 1986, Knops et al. 1997) typically estimated 

translocation on a per needle basis rather than on a 

stand level, and they did not report the effects of N 

treatments on litterfall N return. It is quite conceivable 

that percentage translocation on a per needle basis was 

greater in the high-N treatments in Turner's (1977) ex 

periment. A major finding of the experiment, however, 
was that fertilization caused decreases in litterfall mass 

and N content and therefore more translocation on a 

stand level, whereas the carbohydrate treatments 

caused increases in litterfall mass and N content and 

therefore less translocation on a stand level. As noted 

by Turner (1977), these effects are only a temporary 

buffer, and it can be expected that both litterfall mass 

and N content will increase in the fertilized treatments 

to levels above those in the control once a new steady 
state foliage biomass is achieved, a pattern consistent 

with that observed by Birk and Vitousek (1986) in a 
series of fertilized loblolly pine stands. 

Decomposition and N mineralization.?One feature 

of PNL is that of slowed decomposition because of low 

C:N ratios in litterfall resulting from reduced foliar N 

concentrations. As will be discussed later, the extent 

to which elevated C02 might cause such an effect is 

not clear; however, a review of some recent studies of 

the effects of N on decomposition is in order. 

The classic concept of microbial competition for N 

and the negative effects of C:N ratio on decomposition 
are being challenged and modified in some interesting 

ways. In the past, it was commonly assumed that com 

petition between plant roots, heterotrophs, and nitrifiers 

for NH4+ dictates the fate of N in ecosystems and that 

microbes are better competitors for N than roots (e.g., 
Johnson and Edwards 1979, Vitousek et al. 1979, Riha 

et al. 1987). Schimel and Bennett (2004) challenged 
this view and posed a new paradigm for plant-micro 
bial competition that may be highly relevant to the PNL 

question. They assert that trees can effectively compete 

with soil microbes in two basic ways: (1) by taking up 
organic N released by the depolymerization of N-con 

taining polymers by microbial extracellular enzymes 

(including those released by mycorrhizae); and (2) by 
invading N-rich microsites that exist, at least tempo 

rarily, even in relatively N-limited conditions. McClain 

et al. (2003) discuss the presence of hot spots and hot 

moments as a result of natural heterogeneity in bio 

geochemical systems. Roots, with their elongated 
structure and exploratory habit, presumably can tap 

into these hot spots and hot moments, and thereby 

might effectively mine the soil for N over time. 

The fact that most N in soils is associated with or 

ganic matter has led many forest soil scientists and 

ecologists to assume that N retention in forest ecosys 

tems is controlled almost exclusively by biological pro 
cesses. Relatively little attention has been given to non 

biological N retention in soils, even though such re 

actions have been known for more than 50 years (Matt 
son and Koulter-Anderson 1942a, b). Aside from NH4+ 

fixation in 2:1 clays, abiotic reactions between NH4+, 

N03~, and organic matter can cause significant amounts 

of N accumulation over the long term. Physical con 

densation reactions of phenols (originating from par 

tially degraded lignin and some fungal pigments) with 
either amino acids or NH3 can result in the formation 

of "brown, nitrogenous hum?tes" (Mortland and Wol 

cott 1965, N?mmik 1965, 1970, N?mmik and Vahtras 

1982, Paul and Clark 1989). These reactions are known 

to be of major importance following N fertilization 

(accounting for >50% of applied N in some cases; 

Foster et al. [1985]). Schimel and Firestone (1989) 
found that abiotic reactions between mineral N and 

organic matter accounted for as much as 20% of N 

incorporation in an unfertilized soil in the Sierra Ne 

vada Mountains of California, USA. In a laboratory 

study, Johnson et al. (2000c) found that abiotic NH4+ 

retention accounted for as little as 7% of total immo 

bilization in N-poor Sierran soils, and up to 87% of 

the retention in N-saturated soils from the Smoky 
Mountains of North Carolina, USA. Microbial uptake 
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Fig. 4. Schematic representation of the theoretical chang 
es in loss of litter mass over time with high and low initial 

N concentrations. The figure is adapted from Berg and 

McClaugherty (2003). 

may account for most (80-95%) of the short-term in 

corporation of soil N (e.g.,*Schimel and Firestone 1989, 

Davidson et al. 1990), but the microbial N pool is tran 

sient in nature and may not be as important for long 

term N accumulation as the smaller, but cumulatively 
more important, nonbiological fluxes into humus. 

In their comprehensive review of decomposition pro 

cesses, Berg and McClaugherty (2003) noted that the 

long-known suppressive effect of lignin on litter de 

composition is probably more closely related to the 

associated increased concentrations of N during de 

composition that suppress the formation of ligninase 

and, therefore, lignin decomposition. Berg and Mc 

Claugherty (2003) describe decomposition as a three 

stage process, in which the first stage is controlled 

largely by nutrient concentrations and readily available 

solutes, the second stage is controlled largely by lignin 

decomposition rate, and the third stage is one in which 

decomposition slows considerably as organic matter 

enters the near humus condition. During this final stage, 
litter mass approaches an asymptote that is referred to 

as a limit value, which remains constant for an indef 

inite period of time. Fig. 4 depicts these patterns. Dur 

ing the first stage of decomposition, N concentration 

has a positive effect on decomposition rate (as per the 

traditional effects of the C:N ratio). However, in the 

latter stages of decomposition, the reactions previously 
described have an inhibitory effect as N combines with 

lignin to form extremely recalcitrant compounds and, 

in fact, largely controls the limit value. This relatively 
new model of decomposition has interesting implica 
tions for the issue of PNL with elevated C02, which 

will be discussed. 

Elevated C02 and N Cycling Processes 

The effects of elevated C02 on N cycling have been 
reviewed before (Johnson et al. 1998, Norby and Co 

trufo 1998, Hungate 1999, Hungate et al. 1999, Norby 
et al. 1999, 2000, 2001, Zak et al. 2003); the reader is 
referred to these sources for a more comprehensive 

treatment of the subject. The focus of this paper is the 

potential for PNL, and the following discussion will 

be limited to those results that pertain to this issue. 

Plant uptake and N budgets 

Although tissue N concentrations are often reduced 

with elevated C02, this is often more than offset by 

the increases in biomass, necessitating increased N up 

take in plants (Johnson et al. 1997, 2003?, 2004, Finzi 

et al. 2002, 2004). In some cases, elevated C02 also 

causes an increase in mass and N content of the forest 

floor (e.g., Johnson et al. 2003a, Finzi et al. 2004). 

Thus, elevated C02 seems to facilitate greater N ac 

cumulation in aboveground organic components of the 

ecosystem, even with N limitation. This raises two ob 

vious questions: (1) where does this "extra" N come 

from and (2) how long can this increased N uptake 

continue? 

Potential sources of the "extra" N include fixation 

(symbiotic or free-living), atmospheric deposition, in 

creased N mineralization, and increased root growth 

and soil exploration. Elevated C02 has been found to 

stimulate symbiotic N fixation in several studies (Nor 

by 1987, Arnone and Gordon 1990, Thomas et al. 1991, 

Hungate et al. 1999), but not in every case (e.g., Arnone 

1999). Recently, Hungate et al. (2004) found that sym 

biotic N fixation in a leguminous vine (Galcatica el 

liottii Nutt.) declined over time during an open-top 

chamber study in a Florida scrub oak ecosystem. They 

speculated that this decline was due to the progressive 

deficiency of molybdenum. The potential role of non 

symbiotic N fixation is much smaller than that of sym 

biotic fixation, and the only study to date on the effects 

of elevated C02 on nonsymbiotic N fixation showed 

no C02 effect (Verb?rg et al. 2004). 

A second possibility for finding the "extra" N for 

uptake with elevated C02 is from increased N miner 

alization. The effects of elevated C02 on soil N min 

eralization are mixed, with some studies finding in 

creases (e.g., K?rner and Arnone 1992, Zak et al. 1993, 

Carnol et al. 2002), some finding decreases (Diaz et al. 

1993, Berntson and Bazzaz 1996, Johnson et al. 1996, 

Cotrufo et al. 1998), and some finding no effect 

(O'Neill 1994, Randlett et al. 1996, Gloser et al. 2000, 

Zak et al. 20006, 2003, Finzi et al. 2002, Holmes et 

al. 2003, Barnard et al. 2004). Some of these results 

are perplexing, in that C02 often stimulates additional 

N uptake and even soil N depletion without any mea 

surable change in soil N mineralization or soil N avail 

ability (Johnson et al. 1997, 2000a, b, 2003a, Allen et 
al. 2000, Zak et al. 2000a, 2003, Finzi et al. 2002). 

One possible reason for these seemingly contradictory 

results is that our measures of soil N mineralization 

and soil N availability are not sensitive enough to detect 

the changes in N mineralization rates that took place. 
A third possibility is increased N uptake because of 

increased root growth and soil exploration (Norby et 

al. 1987, Rogers et al. 1992, Day et al. 1996, Tingey 
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et al. 1996, Pregitzer et al. 2000). The conceptual model 

of plant-microbial competition posed by Schimel and 

Bennett (2004) is of obvious relevance here. Increased 

root and mycorrhizal growth with elevated C02 can be 

expected to enhance root invasion of N-rich hot spots 
at hot moments (McClain et al. 2003), and may well 

be the explanation of where the "extra" N for uptake 
with elevated C02 comes from in the absence of ad 

ditional N inputs. This could potentially result in lower 

total N with elevated C02 over time, as was in fact 

found by Johnson et al. (2000a). 

Decomposition and N cycling 

A possible cause of PNL with elevated C02 noted 

early on by Strain (1985) is that of reduced litter quality 
and decomposition rates because of lower tissue N con 

centration, a scenario very similar to that of progressive 

nutrient deficiency described in the earlier nutrient cy 

cling literature (e.g., Turner 1977, 1981). This early 

speculation led to many studies on the effects of ele 

vated C02 on decomposition, the results of which have 

been mixed and generally inconclusive (O'Neill 1994, 

Randlett et al. 1996, Hirschel et al. 1997, Scherzer et 

al. 1998). In a comprehensive review of the literature, 

Norby et al. (2000) found that elevated C02 had little 
or no effect on N r?sorption in field-grown trees, im 

plying that reduced N concentrations in live foliage 

would also cause lower N concentrations in litterfall, 

perhaps leading to reduced decomposition with ele 

vated C02. However, the consensus of a workshop on 

the effects of elevated C02 on litter quality was that 

the effects were generally very small and that the re 

duced decomposition-slowed N cycling hypothesis 
"has been laid to rest" (Norby and Cotrufo 1998). 

However, some of the lack of response in litter decom 

position may be a result of the low sensitivity of the 

techniques used (such as litterbag studies). As will be 

noted later in this paper, simulation studies indicate 

that even slight changes in litter quality continue to 

have long-term effects on growth response to elevated 

co2. 

Over the short term, a reduction in litterfall N con 

centration could indeed slow decomposition rate, as 

speculated by Strain (1985) some time ago. However, 
the studies by Berg and McClaugherty (2003) clearly 
indicate that the long-term prospects for sequestration 

of both N and C in litter are greater with higher initial 
litterfall N concentrations. Thus, reduced litter N con 

centration may actually cause less N sequestration in 

the forest floor over the long term. The changing pat 

terns of decomposition and C and N sequestration in 

decomposing litter over the long term could substan 

tially alter the predictions of the development of PNL 

and the long-term ecosystem responses to elevated 

C02. To my knowledge, these mechanisms have not yet 

been included in models of ecosystem response to el 

evated C02. 

Potential for progressive N deficiency 
with elevated C02 

Because of the paucity of stand-level experiments 
with elevated C02 and the relatively short time spans 
over which such studies have been conducted, the ac 

tual evidence for PNL with elevated C02 is still sparse 
and incomplete. Studies now in progress in closed 

canopy forests, especially those using FACE technol 

ogy (e.g., Allen et al. 2000, Oren et al. 2001, Finzi et 

al. 2002, 2004, Finzi and Schlesinger 2003, Johnson 
et al. 2003a, 2004), will help to address this issue if 

they proceed for a sufficient length of time. Updates 
of those studies will be presented in this volume, and 

therefore they will not be reviewed here. 

Many simulation modeling efforts have addressed 

the prospects for PNL with elevated C02 and merit a 
short review here. McMurtrie and colleagues have ex 

tensively explored the possibility of PNL with elevated 

C02 using the G'DAY (Generic Decomposition and 

Yield) model (Comins and McMurtrie 1993, Mc 
Murtrie and Comins 1996, Medlyn et al. 2000). Their 

simulations point strongly to the importance of soil N 

availability in controlling the long-term ecosystem re 

sponse to elevated C02. For example, Medlyn et al. 

(2000) simulated the effects of elevated C02 and tem 

perature on forests on a decadal time scale using the 

G'DAY model. They found that elevated C02 caused 

a transient, positive growth response that was truncated 

by N limitations. In contrast, increased temperature 

caused prolonged growth increases because it stimu 

lated soil N mineralization. 

Rastetter and colleagues used MEL (Multiple Ele 

ment Model) to explore the N constraints on responses 
to elevated C02 over various time scales, and found 

responses similar to those obtained by G'DAY (Ras 

tetter et al. 1991, 1997, Rastetter and Shaver 1992). 

For example, Rastetter et al. (1997) found that the re 

sponses of an eastern deciduous forest to an instanta 

neous increase in C02 varied according the time scale 

of analysis. Over a short (<1 year) time scale, vege 

tation C:N ratio and primary production increased, but 

N uptake did not. Over a time scale of a few years, 

plant N uptake increased because of increased allo 

cation of energy to fine roots. Because of this, there 

was a net movement of N from soil to biomass over a 

scale of decades. On a time scale of centuries, however, 

continued ecosystem responses to elevated C02 were 

constrained by the possibility of increases in ecosystem 

N content. The simulations thus suggest that short-term 

responses are markedly different from long-term re 

sponses. 

Johnson (1999) explored the interactions between 
elevated C02 and N cycling using simulations gener 

ated by the Nutrient Cycling Model (NuCM) for the 
Pinus taeda site at Duke, North Carolina and a mixed 

deciduous site at Walker Branch, Tennessee near the 

ORNL FACE site. The simulations tested whether N 
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Fig. 5. Simulated biomass, forest floor N content, and soil mineral N (NH4+ + N03~) for Duke, North Carolina, and 

Walker Branch, Tennessee, USA, using the Nutrient Cycling Model (NuCM). The scenarios include control (base case, no 

change) and increased target net primary production by 40%. For Walker Branch, scenarios with and without translocation 

are shown. Data are from Johnson (1999). 

limitation would prevent growth increase in response 

to elevated C02 on a decadal time scale, and whether 

growth response to C02 in N-limited systems could be 

facilitated by increased biomass/N (reduced concen 

tration) and/or increased litter N mineralization. The 

scenarios included (1) reduced foliar N concentrations; 

(2) reduced wood N concentrations, (3) increased target 

net primary production (NPP), and (4) no change. The 

increased NPP scenario is the most interesting and rel 

evant to the actual results from nearby field studies of 

elevated C02 at these sites, which showed increased 

NPP and increased N uptake (Johnson et al. 2003a, 

2004, Finzi et al. 2004). At the Duke site, increased 

target NPP caused greater growth for the first four 

years, but after that, sequestration of N in the forest 

floor and the resultant decline in soil mineral N re 

versed this pattern so that, by the end of the 24-year 

simulation, biomass was actually lower in the increased 

NPP scenario (Fig. 5). At the Walker Branch site, in 

creasing target NPP caused a slight (7%) increase in 

growth and this was maintained throughout the 24-year 

simulation when translocation was allowed. As at 

Duke, there was an increase in forest floor N seques 

tration, but this was not large and apparently did not 

cause reductions in simulated mineral N sufficient to 

cause a reversal in the biomass pattern. When trans 

location was not allowed, however, increasing NPP 

caused a slight decrease in growth along with an in 

crease in forest floor N sequestration (Fig. 5). 

These simulations posed the counterintuitive hy 

pothesis that increased biogeochemical cycling of N 

(via increased litterfall N) can cause reduced growth 

in an N-limited system such as the Duke site because 

of increased accumulation of N in the forest floor and 

soil. Translocation (removal of N from senescing leaves 

prior to litterfall) could mitigate this response by al 

lowing the trees to maintain a greater proportion of N 

taken up rather than recycle it back to the forest floor 

and soil where it can be immobilized. Eliminating 

translocation at Walker Branch changed the sign as well 

as the magnitude of the responses in three of the four 

scenarios simulated. NuCM currently does not allow 

translocation in coniferous species, and thus the effects 

of translocation on N cycling in the Duke simulations 

are not known. 

Whether elevated C02 facilitates N uptake or not 

over the short term, it would seem that the long-term 

prospects for continued growth responses are poor un 

less additional N is supplied by either N fixation or 

increased atmospheric deposition. This is evident not 

only from the formal simulation modeling exercises 

just described, but also from simple logic: although 

soil N stores are usually very large in relation to plant 

uptake (Cole and Rapp 1981), they are not infinite. It 
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would seem that diminishing returns must ultimately 
set in as soil labile pools are depleted, unless additional 

N is supplied. Atmospheric N deposition is apparently 
increasing in many parts of the world (Galloway et al. 

1995) and may facilitate continued growth responses 
to elevated C02 as well as produce growth increases 

in its own right. 

Summary and Conclusions 

Progressive nitrogen limitation as a result of rapid 

growth has been well-documented in the older nutrient 

cycling literature from plantation forests. Progressive 

nitrogen limitation has been attributed largely to ac 

cumulation of N in both biomass and forest floor com 

ponents in excess of any known inputs, and is not com 

pletely offset by the well-documented "mining" of soil 

N in some instances. New insights into nutrient cycling 

processes have shown how soil N mining can occur 

(Schimel and Bennett 2004) and describe counterin 

tuitive mechanisms by which forest floor N sequestra 

tion can be enhanced rather than reduced by greater N 

concentrations in litterfall (Berg and McClaugherty 

2003). However, these new findings do not change the 

basic reasoning or conclusions drawn from previous 

nutrient budget studies as to the basic causes of PNL, 

namely, sequestration of N in vegetation and forest 

floor components. 

Field studies have shown that elevated C02 can cause 

increased growth even in the face of N limitation over 

the short term (<6 years). This is facilitated, to some 

degree, by greater biomass production per unit N up 

take (lower tissue N concentrations), but, more often 

than not, N uptake is increased with elevated C02 as 

well. Most studies to date have indicated little or no 

effect of elevated C02 on soil N mineralization rate, 

and thus the most likely mechanism for the observed 

increase in N uptake is the commonly observed in 

crease in root growth, facilitating greater soil explo 
ration. Experience from the early nutrient cycling lit 

erature, as well as simulation modeling, suggests that 

PNL will at some point truncate the observed increases 

in growth and nutrient uptake with elevated C02, de 

spite efficient N cycling and soil mining, unless ex 

ternal inputs of nutrients are increased. 
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