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Abstract

Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest
stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tran-
forms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific
aims were to: 1) evaluate how a Fourier filter could be used to classify canopy gap sizes objectively, 2) deter-
mine which statistics might be useful for detecting and measuring disturbance impacts, and 3) examine the po-
tential for this method to determine spatial domains in a pair of ponderosa pine (Pinus ponderosa) stands in the
Black Hills of South Dakota, USA. The eventual goal is to develop an operational method of assessing the im-
pacts of natural disturbances such as disease. Results indicated that several spatial metrics discriminated between
harvested and unharvested stands. We hypothesize that these metrics will be useful as spatial measures of disease

impact if the analyses are performed on specific size classes of forest gaps.

Introduction

Disturbances within forest landscapes are major
causes of spatial heterogeneity that impact many of
the resources managed by forest managers. Some
consider these disturbances to be resources them-
selves and that they should be conserved and studied
for their management utility (Baker 1992). Silvicul-
turists try to control stand structure and composition
by mimicking natural small-scale disturbances (Smith
1986). To manage, manipulate, or mimic disturbances
effectively, managers must be able to adequately mea-
sure their impacts on the ecosystem.

Forest managers have traditionally addressed im-
pact assessments from a timber production point of
view. Methods used to assess disturbances have been
based on timber metrics such as volume or board feet
of standing growing stock of saw-timber (Stark
1987). These metrics have been useful for making
timber production decisions, but they may be less
useful for making decisions about such non-timber

resources as wildlife habitat, recreation, wilderness,
and aesthetic values. An alternative to impact assess-
ments based on timber production metrics is an as-
sessment based on spatial metrics that describe how
conditions vary in space.

Tree diseases, insect pests, strong winds, lightning
strikes, and other kinds of disturbances influence for-
est landscape structure by killing trees. Canopy gaps
that result from tree mortality vary in size, shape, and
frequency. Specific disturbance agents generate can-
opy gaps that often have distinctive characteristics
(Lundquist 1995). For example, gaps caused by root
diseases are commonly composed of trees in various
stages of dying and degradation, whereas groups of
trees in approximately the same state of degradation
often make up gaps caused by bark beetles. Com-
monly, trees stressed by root diseases attract bark bee-
tles resulting in gaps with characteristics of both dis-
eases and insects, making impact alone difficult to
assess. Basic research is needed to identify which
metrics are most appropriate for measuring disturb-
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ance impact. In particular, the variation of metrics
with spatial scale may provide a useful method of
classifying different landscapes.

Characterization of spatial scale has long been a
central theme of landscape ecology (Levin 1992).
Various studies have examined how scale affects spa-
tial statistics (Turner et al. 1991; Cullinan and Tho-
mas 1992; Lundquist 1995; Qi and Wu 1996; Meisel
and Turner 1998; Hargis et al. 1997). Wiens (1989)
defines spatial domain as “regions of the spectrum
over which ... patterns either do not change or change
monotonically with changes in scale.” Several authors
describe how scale affects the spatial domain by ob-
serving trends in the variance of various statistics
with increasing scale (O’Neill et al. 1986; Carlile et
al. 1989; Woodcock and Strahler 1987; Horne and
Schneider 1995). Most of these discussions have been
theoretical and/or based on artificial landscapes; little
has been done with actual field data. One of the aims
of this paper is to perform a preliminary evaluation
of an objective method of classifying spatial scales of
real landscapes.

One method of discriminating features at different
spatial scales uses low pass Fourier Transforms. This
procedure removes unwanted detail from images
based on size; viz., features smaller than a given size
are removed by filtering. In effect, this procedure
helps to focus on features of interest by reducing
noise caused by these unwanted features (Sommer-
feld et al. 1998). Technically, the Fourier Transform
splits a signal into a set of sine and cosine functions
of different scales. In our case, the signal consists of
the brightness levels of pixels of grayscale aerial pho-
tos. The analysis results in a two-dimensional plot of
signal amplitudes at different scales. A low pass filter
is implemented by zeroing the coefficients of the sine
and cosine functions for separations smaller than
some cutoff scale. By performing this analysis at dif-
ferent cutoffs a series of images can be developed that
emphasize progressively larger spatial scales. In the
study described below, we examine images of land-
scapes based on patterns of distribution of increas-
ingly larger canopy gap sizes.

The long-term goal of this research is to improve
methods for assessing disease impacts on forests. In
this case study, we compared plots in an unharvested
stand of ponderosa pine (Pinus ponderosa) to plots in
a managed stand that had been thinned using the as-
sumption that tree harvesting is comparable to ex-
treme disease conditions. The analysis took two
highly contrasting canopy conditions with the aim of

assessing whether the Fourier Transform had poten-
tial for measuring more subtle differences in land-
scape patterns more commonly associated with dis-
eases and other small-scale disturbances. More
specifically, we investigated how different spatial
metrics were affected as the spatial scale varied to 1)
determine which metrics might be useful for measur-
ing disease impacts, and 2) examine the potential for
this method to determine spatial domains in forest
stands.

Methods and materials
Study site

This study was conducted in the Black Hills National
Forest in southwestern South Dakota, USA. Two sites
composed mostly of mature ponderosa pine were
used. The first was 5.2 ha of the 110 ha Upper Pine
Creek Research Natural Area (UPC), a first order wa-
tershed of the Upper Pine Creek. The other site was
16.3 ha of the 28 ha Cameron Creek Timber Sale
(CAM), an area that had been thinned from a basal
area of 10.2 m? to 7.5 m? in 1989.

Aerial photographs

Aerial photos (1:14800) of the study areas were digi-
tized using a Sony color video camera to images of
399 x 399 pixels, well above the 110-pixel limit for
stable results specified by Hargis et al. (1997). Scales
were determined by measuring points of known sepa-
ration on the images. The 5.2 ha Upper Pine Creek
subarea had a scale of .33 m? per pixel and the 16.3
ha Cameron subarea had a scale of 1.02 m? per pixel.
Image acquisition and processing were performed us-
ing Image Pro (Media Cybernetics 1995). Rock out-
crops were masked out of the image since these fea-
tures were irrelevant to this study.

Fourier transform

The Fourier Tranform is a curve fitting technique,
which for two dimensions, uses a series of the form,

1
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to fit the function f{x,y), where x and y are the pixel
dimension in the x and y directions and ni and n; are
integers each spanning the range from 1 to 399. The
coefficients, a,; ,, and b, . are determined by solving
the set of simultaneous equations where f{x,y) is the
brightness of the pixel at each location. If f{x,y) con-
tains elements which repeat over a set spacing, the
Fourier Tranform identifies these with large coeffi-
cients a and b for those spacings. For example
clearcutting might occur in regularly spaced blocks of
30 m?. In that case the coefficient for n,x = 30 m and
n;y = 30 m would be large. Generally, however, the
transform merely provides a convenient curve fitting
technique which produces an alternative representa-
tion of the data. Some manipulations of the data are
more convenient using this alternative representation.
For our application, the Fourier Tranform provides a
convenient method of implementing a low pass spa-
tial filter which eliminates the finer detail and empha-
sizes the coarser features. The low pass filtering is
accomplished by setting the coefficients a,, ,; and b
nj to zero for spacings nx and ny smaller than the
desired cutoff spacing since the finer detail is repre-
sented by coefficients of smaller n. f{x,y) is then re-
calculated using the remaining coefficients and can be
presented as a blurred image. The amount of blurring
depends on the number of coefficients which are ze-
roed. Currently available software makes the calcula-
tion of the two-dimensional Fourier Tranform and its
inverse (f{x,y)) for all combinations of nx and ny
practical and indeed almost effortless. We use Im-
agePro Plus (Media Cybernetics 1995).

The Fourier Tranform used as a low pass filter
gives information equivalent to a moving window
analysis with the cutoff spacing closely related to the
window size. We used the Fourier Transform because
the software available to us provided a wider choice
of cutoff window sizes than did the available moving
window analysis. The Fourier Transform produces
gray scale images smoothed by the low pass filtering.
Application of a threshold level converts the resultant
images to black and white Boolean images. Canopy
gaps are a lighter gray than the trees so that the white
spaces correspond to the gaps in the thresholded im-
age. Pixels with brightness values above the thresh-
old value are forced to white and those with values
below to black.

Images produced by the low pass Fourier filtering
are gray scale images with the lighter regions (gaps)
grading into the darker regions. Therefore, the result-
ant gap size in the thresholded black and white Bool-
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ean image is a function of the threshold level. A
higher threshold level moves the boundaries toward
the lighter regions decreasing the gap size, while a
lower level moves the boundaries toward the darker
regions increasing the gap size. For consistent results,
it is necessary to use a consistent criterion for choos-
ing a threshold level. A uniform distribution of gap
sizes has a 1 to 1 correspondence between gap size
and window size. The threshold levels in each case in
this study were chosen as a close approximation to
the following:

A,., = (spacingl2)® + K, )
where A, is the mean gap area. The expression
(spacing/2) represents the effective area of the bright
half (gap) of the filtered image (Sommerfeld et al.
1994). Spacing is termed lag in that publication. K is
a constant related to the minimum gap area. Devia-
tions from a straight line indicate a non-uniform dis-
tribution. For example, if a size category is missing,
the moving window will find the next larger category,
creating a step in the curve. Linear regressions of the
mean gap area versus window area determined K and
were used to aid in judging the best threshold level
for each image for this study. Because the distribu-
tions were not necessarily uniform some judgment
was involved.

Two artifacts are generated by the low pass Fou-
rier filtering that influence the way various metrics
change with scale. First, shapes are simplified as the
cutoff frequency is reduced (i.e., effective window
size increased) (Hargis et al. 1997). Compare Figure
1A with Figure 1B. An example of the consequences
of this artifact is the decreasing trend of the mean
fractal dimension with increasing window size in
Sommerfeld et al. (1998). Areas that were empha-
sized in that study became visually closer to simple
circular shapes. This artifact may be removed by
ANDing the thresholded Fourier filtered image with
the non-filtered thresholded image.

The logical AND as applied to the Boolean images
consists of a pixel-by-pixel comparison of two im-
ages. The result is white where both pixels are white.
A black pixel in either (or both) images produces a
black pixel in the result. The main result for our im-
ages is that the irregular edges of the unfiltered im-
age are added back into the filtered image. Careful
comparison of Figure 1A and 1D illustrates the result
of this technique. This technique emphasizes either
larger gaps or clumps of gaps where the gap or clump
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Figure 1. Original monochrome image thresholded at a level selected according to Equation (2). (A) Low pass Fourier image filtered at 12
x 12 pixels and thresholded as above. (B) Fourier filtered at 14 x 14 pixels subtracted from the 12 x 12 filtered image. (C) Final result of 12
x 12 pixel low pass Fourier filter, thresholding, subtraction of the 14 x 14 filtered image ANDed with the unfiltered image (D).

size is related to the Fourier window size. In other
words, the Fourier filtering selects for larger features
and the ANDing procedure adds the finer details back
into these larger features.

The second artifact generated by Fourier filtering
(and a moving window analysis) arises because it se-
lects for regions that are the same size or larger than
the effective window area. This also leads to difficul-
ties in interpreting the data. Note the large clearing in
the lower left of Figures 1A and 1B. It is larger than
the 12 x 12 pixel size of the filter of Figure 1B. It is
possible to subtract the Fourier filtered and thresh-
olded image of the next larger window image from
the size of interest. This, in turn, generates a different
artifact. The regions selected are not monochromatic

in the spatial domain. In other words, a collection of
gaps of a certain size is not represented by a sharp
peak in the Fourier analysis, but by a broad peak.
Thus, the next larger window image often contains
smaller residuals of the regions that were enhanced
by the smaller window. The result is that many of the
regions remaining after subtraction are in the form of
rims delineating the edges of the desired gaps, as
shown in Figure 1C. A method of resolving this prob-
lem is to dilate the white rims until they form con-
tinuous regions with the mean gap area again closely
approximating the window area. This procedure tends
to narrow the size distribution of the regions en-
hanced in the image. Then ANDing with the unfil-
tered thresholded image adds the fine detail back in
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Table 1. Various spatial statistics generated from analyses of digitized and transformed images of an unharvested forest landscape (Upper
Pine Creek Research Natural Area) and a harvested landscape (Cameron). Statistics were calculated using window sizes of 185 and 1085 m?.
Spatial statistics were calculated using FRAGSTATS (McGarigal and Marks 1995).

Variable Description Variable Name

Window size 185 m?

Window size 1085 m?

UPC Cameron Difference (%) UPC Cameron Difference (%)

Index of landscape shape LNDSHAPE 4.87 7.56 55 2.21 2.96 33
Mean gap fractal MEAN_D 1.14 1.08 -5.2 1.16 1.11 —4
Percent of landscape in gaps CLASS% 3.46 3.69 6.54 1.39 1.83 31
Total number of gaps NOPATCH 277 827 198 59 117 99
Mean shape index AVESHAPE 1.29 1.22 =5.11 1.41 1.42 0.82
Contagion in percent CONTAG 83 80 -3.27 92 89.84 -2.3
Mean area-weighted shape index WTSHAPE 1.44 1.33 -7.6 1.96 1.76  -10
Standard deviation of gap area (ha) SIZE_CV 82 75 -8.19 145 114 -21
Edge density in meters/hectare EDGEDENS 322 203 -36 101 60 -40
Area-wted mean fractal dimension WT_D 1.18 1.11 -5.85 1.25 1.17 -6.58
Gap area standard deviation (ha) SIZE_SD 0.002 0.005 163 0.008 0.03 276
Total gap edge length (m) TOTEDGE 7424 33939 357 2329 10166 336
Total within-gap core area TOTCORE 0.18 6.16 3288 0.10 3.06 2741
Total area in gaps (ha) CLASSAREA 0.79 6.16 674 0.32 3.06 855
Mean gap area (ha) AVESIZE 0.003 0.007 142 0.005 0.02 434
Double fractal dimension DOUB_D 1.30 1.32 1.35 1.35 1.31 -3.13
Mean nearest neighbor distance (m) MEAN_NN 5.48 11.39 107 3.63 12.87 253
CVof the nearest neighbor distance NN_CV 136 97 28 129 201 56
SD of the nearest neighbor distance NN_SD 7.48 11.09 48 4.70 26.23 457
Mean proximity index MEANPROX 6.18 2.54 =58 27 14.19 47

only to those regions that are enhanced. This proce-
dure emphasizes gaps or clumps of gaps whose size
corresponds to the Fourier window size. The final re-
sult is shown in Figure 1D.

Metrics using the smallest and the largest window
sizes may also generate artifacts. The smallest win-
dow size is equivalent to the pixel size. The spatial
metrics may be affected by the square shape of the
pixels. The largest window size (2100 m?) may not
contain enough data for accurate calculation of the
metrics.

Two-dimensional Fourier Tranforms were applied
and adjusted to successively reject finer spatial infor-
mation from about 3 to 2100 m? window sizes. The
images were thresholded at a level that produced a
close correspondence between the window size and
the gap size. The next larger window image was sub-
tracted and the resulting image was dilated until mean
canopy gap size equaled the window size. AND was
used with the smallest window image to recover the
spatial details of the gap edges.

Transformed images were entered into a GIS and
spatial statistics were calculated (Table 1) with the

spatial analysis program FRAGSTAT (McGarigal and
Marks 1995). Spatial metrics were compared visually
by standardizing their values in terms of the number
of standard deviations from each metric’s combined
mean.

A hierarchical cluster analysis using Euclidean dis-
tances with single linkage was performed on stan-
dardized data and all 20 metrics for each window size
for both sites. The assumption was made that window
sizes that clustered together represented members of
the same spatial domain and by observing the cluster
behavior the number and bounds of various spatial
domains could be determined.

Profiles composed of values for all of the spatial
statistics between sites were compared to define how
stand manipulation altered the range of spatial do-
mains and spatial heterogeneity and to determine
which metrics were most sensitive to these changes.
Values for UPC wre used as reference. Values for
each variable of the middle window size of each clus-
ter (spatial domain) in UPC were used for compari-
son with the same window size in CAM. The assump-
tions were made that UPC was similar to CAM if the
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latter had not been disturbed and that sensitive vari-
ables would be useful candidate variables for impacts
caused by diseases and other disturbances that are
normally less intrusive than the silvicultural manipu-
lations used at CAM. The intent was to use these
metrics in a later more robust study comparing dis-
eased and non-diseased forest stands and using a
wider range of landscape conditions.

Results
Spatial analysis

The shapes of these trend curves varied among met-
rics as their values changed with increasing Fourier
Transform window size (Figure 2). Metrics were clas-
sified according to similarity in curve shape between
the two sites. Three categories were defined as fol-
lows:

1. Metrics that show little difference between UPC
and CAM. These included: Landscape Shape (A);
Class (C); Number of Patches (D); Average Shape
(E); and Contagion (F). Because these metrics
were apparently not responsive to disturbance,
they were not useful in assessing disturbance im-
pact and were not considered further in this study.

2. Metrics with relatively simple curves that were
similar in shape but showed distinct differences in
values over a significant range of scales. UPC had
higher values than CAM for Weighted Shape (G),
Size Coefficient of variation (H), Edge Density (I),
and Weighted Fractal Dimension (J), and lower
values for Mean Gap Fractal (B), Size Standard
Deviation (K), Total Edge (L), Class Area (M),
and Average Size (N).

3. Metrics with complex shapes showing distinct dif-
ferences between UPC and CAM. These included:
Double Log Fractal Dimension (O); Total Core
(P); Mean Nearest Neighbor (Q); Nearest Neigh-
bor Coefficient of Variation (R); Nearest Neighbor
Standard Deviation (S); and Mean Proximity (T).
Trend curves (Figure 2) showed relatively abrupt
changes in shape at various window sizes for these
metrics. For UPC, these changes occurred at 10
(Figure 20, 2P), 314 (Figure 2S, 2T), 530 (Figure
2Q, 2R, 2S), 829 (Figure 20, 2R, 2S, 2T), 1983
(Figure 20, 2R), and 1475 m? (Figure 2R). For
CAM, trend changes occurred at 40 (Figure 2 O,
P, Q), 95 (Figure 2Q), 380 (Figure 2T), 517 (Fig-

ure 2Q, 2T), 655 (Figure 2Q, 2R, 2S), and 1164
m? (Figure 2R). In general, most trend changes
occurred in the mid size ranges and the frequency
of changes in trend shape was less in CAM than
UPC.

Cluster analysis

Figure 3 represents the results of the cluster analysis
using all window sizes. At a distance of 0.8, the larg-
est and smallest window sizes for both UPC and
CAM fail to cluster with any other window sizes. All
other window sizes form four clusters at a distance of
0.5. For UPC, the first cluster is composed of win-
dow sizes that range from 20 to 530 m? and the sec-
ond cluster ranges from 830 to 1475 m?. For CAM,
these ranges are 40 to 520 m? and 655 to 1165 m?,
respectively.

Comparisons based on selected single window sizes

Metric values calculated at scales of 185 m? and 1085
m? gave distinct differences for most metrics. These
were used to contrast harvested and unharvested
plots. The percent difference varies from —58% to
3288%, depending on the metric and the window size
used for assessment (Table 1). Most variables had
different values at different scales. These differences
were usually either both positive or both negative.
Some variables showed a positive difference at one
scale and a negative difference at another.

Discussion

In this study, timber harvesting was used to identify
the sensitivity of spatial metrics to disturbance. Har-
vesting is a broad scale disturbance and arguably re-
presents an epidemic condition similar in some ways
to disease-caused epidemics because both cause gaps.
Based on the assumption that the Upper Pine Creek
Research Natural Area adequately represents CAM
before it was harvested, the following observations
could be made. At CAM, harvesting: 1) increased the
total number of gaps in the stand, 2) increased or de-
creased the average gap size depending on scale, 3)
increased the total length and density of gap edges,
4) decreased the variation in size among gaps, 5) in-
creased the total within gap core area, 6) increased the
mean nearest neighbor distance and the variation in
distance among gaps, 7) decreased the mean proxim-
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Figure 2. Standardized variation of spatial metrics as their values change with increasing Fourier Transform window size for Upper Pine
Creek Research Natural Area, which was an unharvested site (solid lines), and for Cameron Creek Timber Sale, which was a previously
harvested site (dotted lines). The statistics used were: A) Index of landscape shape (LNDSHAPE), B) Mean gap fractal (MEAN_D), C)
Percent of landscape in gaps (CLASS%), D) Total number of gaps (NOPATCH), E) Mean shape index (AVESHAPE), F) Contagion in per-
cent (CONTAG), G) Mean area-weighted shape index (WTSHAPE), H) Standard deviation of gap area (SIZE_CV), I) Edge density in
meters/hectare (EDGEDENS), J) Area-weighted mean fractal dimension (WT_D), K) Gap area standard deviation (SIZE_SD), L) Total gap
edge length (TOTEDGE), M) Total area in gaps (CLASSAREA), N) Mean gap area (AVESIZE), O) Double fractal dimension (DOUB_D),
P) Total within-gap core area (TOTCORE), Q) Mean nearest neighbor distance (MEAN_NN), R) CV of the nearest neighbor distance
(NN_CV); S) SD of the nearest neighbor distance (NN_SD); T) Mean proximity index (MEANPROX).
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ity index, and 8) reduced the complexity of gap
shapes.

Results showed that the interpretation of impact of
a disturbance is largely dependent on the spatial scale
at which the affected landscape is measured. Disturb-
ances have different kinds and magnitudes of impact
at different scales. In order to adequately characterize
and measure impact, a suitable scale must be deter-
mined. In this regard, Wiens (1989) describes a use-
ful analogy, “acts in what Hutchinson (1965) has
called the ‘ecological theatre’ are played out on vari-
ous scales of space and time. To understand the
drama, we must view it on the appropriate scale.”
What is a ‘suitable scale’ of analysis largely depends
on the resource or issue of concern. In this study, dif-
ferences of impact of the disturbance on the spatial
metrics varied from —58% to 3288%, depending on
the metric and the spatial scale (Table 1). Tradition-
ally, impact assessments have been based on a single
spatial scale. Operationally, defining a significant
scale helps limit the number of observations needed
to contrast disturbed and undisturbed sites and thus
simplifies the analysis. Category 2 variables seemed

more useful for quantifying impact since magnitude
rather than curve shape changed with disturbance.
Remote sensing techniques coupled with digital
transformations offer useful avenues for assessing
canopy structure and quantifying its spatial patterns.
This study uses digital imagery of aerial photos, the
Fourier Tranform, and a cluster analysis to contrast a
naturally diverse canopy structure with one that had
been made uniform by thinning. The results indicate
that aerial photos and the two-dimensional Fourier
filter can be used to classify gap sizes. The technique
is less labor intensive and more objective than field
surveys. Results also suggest that several spatial met-
rics will shift values when landscape patterns change.
These shifts can be interpreted in terms of changes in
the existence and characteristics of landscape do-
mains. Wiens (1989) and others (e.g., Dayton and
Tegner (1984) and Maurer (1985), Morris (1987)) be-
lieve that there exist inherent scales in nature. Not all
have agreed. Allen and Starr (1982), for example, de-
scribe scale as, “not an inherent attribute of the pro-
cess, but an artifact of the levels of resolution used to
measure the process.” The method we describe here
might be a useful tool for addressing this debate.



Hargis et al. (1997) investigated the trends of vari-
ous spatial statistics by varying the proportion of
gapped area (5% to 95%) in simulations of small
landscapes. They found the following: edge density
and contagion are inversely correlated; mean nearest
neighbor was a useful measure of a changing land-
scape when less than 20% of the landscape was in the
measured class; mean proximity index could be used
as a measure of gap isolation best at low percentages
of the measured class area; and fractal dimension did
not indicate differences among gaps with small dif-
ferences in shape. Although our study covers a much
more limited range than that used by Hargis et al.
(1997), our results are in good agreement with theirs
after artifacts generated by Fourier Transforms are
corrected (Figure 2). At lower proportions, the edge
density increases with proportion of the measured
class (Figure 9.5 in Hargis et al. (1997)) with a slope
lower for the clear cut as opposed to the random
patches. Edge densities calculated in our study show
a similar pattern with the values for the managed
stand lower for each map proportion than for the un-
managed stand. Contagion shows a similar agree-
ment, although differences between the two types of
landscapes are not as large as for edge density. Mean
proximity distance in our study showed distinct dif-
ferences between the two stand types, but the differ-
ences are not apparent in Hargis et al. (1997) and may
be due to differences in graph scale.

We used cluster analysis to define spatial domains.
Theoretically, spatial domains should also be detect-
able by examining changes in trends as the propor-
tion of gap area increases (Qi and Wu 1996). In this
research, nearest neighbor statistics were most sensi-
tive to these changes and might be useful for deter-
mining domains as defined by Wiens (1989) and for
assessing the impacts that diseases and other disturb-
ances have on landscape structure. The coefficient of
variation of the nearest neighbor distance shows low
values at 20 m?, 725 m?, and between 1474 m? and
2123 m?. These values parallel the bounds of the two
spatial domains identified by cluster analysis. Low
CV values apparently indicate transitions between
scales. Gradual slopes presumably are associated with
irregular landscape patterns and plateaus or ‘stair
steps’ are associated with regular repeating patterns.
Since the graphs in Figure 2 show both, the landscape
appears to be a mixture of irregular and regular pat-
terns. The lower domain corresponds to diameters of
roughly 1.81 m to 23 m and the upper domain corre-
sponds to 28.8 to 38.4 m. The former is probably as-
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sociated with spaces between individual trees and the
latter to canopy gaps.

Several disturbance agents have been identified as
causing tree mortality resulting in canopy gaps in the
Upper Pine Creek, including: diseases, wildfire,
heavy winds, bark beetles, tree suppression, competi-
tion, snow/ice buildup, shrub competition, site qual-
ity, and lightning (Lundquist 1995). Pattern irregular-
ities within the upper spatial domain might have been
caused by disturbance agents that individually oper-
ate at different scales within a domain, or agents that
overlap in time and space (Carlile et al. 1989). Fur-
thermore, interacting agents may synergistically cre-
ate conditions that single agents cannot create alone.
For example, Armillaria root disease can create a lim-
ited gap that spreads relatively slowly, but this gap
can act as a focal point for the subsequent develop-
ment of bark beetles that greatly and rapidly expand
the disturbed area (Rykiel et al. 1988).

Canopy patterns can be immensely complex be-
cause they are commonly determined by disturbance
and recovery processes continuously interacting,
evolving, and adjusting in time and space. Impacts of
disturbances are reflected in the changing spatial
structure of the forest canopy. Because of the direct
and indirect interactions associated with these sys-
tems, it is difficult to determine which disturbance
components are important and what is the relative
significance of each. This is especially important with
diseases that are often well integrated with other eco-
logical processes that effect canopy structure. One of
the major challenges in disturbance ecology is to de-
scribe and understand the nature of these interactions.
Dividing the landscape into spatial domains is a use-
ful way of partitioning a complex environment into
the processes that sculpture structure. One way of
partitioning the environment is to determine signifi-
cant spatial ranges over groups of disturbances occur.

We suggest that the concept of disturbance regime
and mortality patterns can be used as a basis of mea-
suring the severity and impact of forest diseases, and
other disturbances acting within the same spatial do-
main. Few studies have used spatial metrics to char-
acterize these types of disturbances, but there is little
doubt that spatially referenced assessments will be-
come more prominent as the use of GIS becomes
more prevalent among forest managers. According to
Levin (1992), “understanding patterns in terms of the
processes that produce them is the essence of science,
and is the key to the development of principles for
management”.
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Disturbances of a similar spatial and temporal
scale have a certain ecological equivalency that at a
first approximation offers a logical place to compare
and contrast and examine the interactive nature of
co-occurring disturbances. Grouping disturbances on
the basis of scale may be a useful way of classifying
them into functional groups of disturbances or groups
that have similar structural or process features that
can influence the forest ecosystem (Korner 1993).
This presents a potential method of comparing across
different types of disturbances.

The method we presented above is relatively new
to landscape ecology. Its usefulness depends largely
on its reliability and sensitivity, which we did not in-
vestigate here. Our focus was to explore the potential
of this method using extreme differences in landscape
conditions. Showing associations between spatial pat-
terns of canopy and causes and predicting effects of
different causes requires an understanding of the
ranges of values and trends of these values as land-
scape patterns change (Hargis et al. 1997). More anal-
yses need to be done of this method to establish these
values before a more general recommendation could
be made. In particular, a more rigorous test using a
wider range of conditions would be needed to deter-
mine its use in assessing impacts of disturbances that
cause more subtle changes in spatial structure, like
forest tree diseases.
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