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Abstract. The timing, location, and magnitude of major disturbance events are currently
major uncertainties in the global carbon cycle. Accurate information on the location, spatial
extent, and duration of disturbance at the continental scale is needed to evaluate the ecosystem
impacts of land cover changes due to wildfire, insect epidemics, flooding, climate change, and
human-triggered land use. This paper describes an algorithm developed to serve as an
automated, economical, systematic disturbance detection index for global application using
Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua Land Surface Temperature
(LST) and Terra/MODIS Enhanced Vegetation Index (EVI) data from 2003 to 2004. The
algorithm is based on the consistent radiometric relationship between LST and EVI computed
on a pixel-by-pixel basis. We used annual maximum composite LST data to detect
fundamental changes in land–surface energy partitioning, while avoiding the high natural
variability associated with tracking LST at daily, weekly, or seasonal time frames. Verification
of potential disturbance events from our algorithm was carried out by demonstration of close
association with independently confirmed, well-documented historical wildfire events
throughout the study domain. We also examined the response of the disturbance index to
irrigation by comparing a heavily irrigated poplar tree farm to the adjacent semiarid
vegetation. Anomalous disturbance results were further examined by association with
precipitation variability across areas of the study domain known for large interannual
vegetation variability. The results illustrate that our algorithm is capable of detecting the
location and spatial extent of wildfire with precision, is sensitive to the incremental process of
recovery of disturbed landscapes, and shows strong sensitivity to irrigation. Disturbance
detection in areas with high interannual variability of precipitation will benefit from a
multiyear data set to better separate natural variability from true disturbance.

Key words: disturbance recovery; ecosystem variability; landscape disturbance; MODIS/Aqua Land
Surface Temperature; wildfire.

INTRODUCTION

Landscape-level spatial data of disturbance location

and intensity on the earth surface are important for

tracking responses of the biosphere to climate change,

for global carbon budget modeling, and for improved

resource management. An ecological disturbance is an

event that results in a sustained disruption of ecosystem

structure and function (Pickett and White 1985, Tilman

1985). Similarly, we define disturbance as any factor that

brings about a significant change in the ecosystem leaf

area index (LAI) for a period of more than one year

(Waring and Running 1998). Disturbance can have both

negative (e.g., wildfire) and positive (e.g., irrigation)

effects on the LAI and may occur naturally (e.g.,

wildfires, storms, or floods) or may be human induced,

such as clearing for agriculture, clear-cutting in forests,

building roads, altering steam channels, or irrigating

land (Dale et al. 2000). The effects of disturbances are

controlled in large part by their intensity, duration,

frequency, timing, and spatial impact (i.e., the size and

shape of the area affected; Sousa 1984, Pickett and

White 1985, Pickett et al. 1987, Reice 1994, Turner et al.

1997). Disturbances may affect both above- and

belowground processes (Dale et al. 2000), and many of

these disturbance events alter ecosystem productivity

and resource availability on large spatial and temporal

scales (Potter et al. 2003). Ecosystem scientists have yet

to develop a proven methodology to monitor and

understand major disturbance events and their historical

regimes at a global scale (Potter et al. 2003).

Because major ‘‘pulses’’ of CO2 from the loss of

terrestrial biomass are emitted to the atmosphere during

large disturbance events, the timing, location, and

magnitude of vegetation disturbance is presently a

major uncertainty in understanding the global carbon

cycle (Canadell et al. 2000). Elevated biogenic sources of

CO2 have global implications for climatic change, which

can, in turn, affect a vast number of species on earth and

the functioning of virtually all ecosystems (Potter et al.

2003). For example, van der Werf et al. (2004) estimated

that the global carbon emissions anomaly (695% CI)
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from fires during the 1997–1998 El Niño was 2.1 6 0.8

Pg of carbon. Amiro et al. (2001) estimated direct

emissions of carbon from Canadian forest fires for all of

Canada for the period from 1959 to 1999, with a mean

annual estimate of 27 6 6 Tg C/yr. While such estimates

provide insight into the magnitude of the potential

contribution of fire emissions to atmospheric carbon,

more accurate information on disturbance location,

area, intensity, and recovery will help reduce the level of

uncertainty and, therefore, provide relatively accurate

information on the contribution of wildfire to carbon

fluxes. Conversely, irrigation can be considered a

positive disturbance that increases the leaf area of the

irrigated land area, changes the energy balance of the

land surface, and can result in increased ecosystem

carbon accumulation. In the United States, there were

an estimated 223 850 km2 of irrigated agricultural area

in 2003 (Food and Agriculture Organization, available

online [last updated January 2006]).2 Carbon accumula-

tion in ecosystems recovering from disturbance or

undergoing intensive management, such as irrigated

farm lands, are high compared with chronosequence

studies that suggest much lower long-term values in

natural landscapes (Schimel et al. 2001). Accurate

information on changes in irrigated land area is

important for understanding the contribution of these

lands to carbon fluxes.

Leafy vegetation cover, such as is measured by

spectral vegetation indices (VI), is likely the most fragile

and, therefore, perhaps the single most vulnerable biotic

component of terrestrial ecosystems to detectable

alteration during disturbance events (Potter et al.

2003). Midday radiometric land surface temperature

(LST) is strongly related to vegetation density and is,

therefore, perhaps the single most vulnerable abiotic

component of terrestrial ecosystems to detectable

alteration during disturbance events. Disturbances such

as drought, wildfire, insect defoliation, urban develop-

ment, and irrigation result in conditions that alter

vegetation and, therefore, the energy balance of a site.

Coupling LST with the Enhanced Vegetation Index

(EVI) from the Moderate Resolution Imaging Spectro-

radiometer (MODIS) is a logical and dynamic approach

to measure both the energy exchange consequence and

the vegetation density changes resulting from distur-

bance.

The coupling of LST and spectral VIs

Early applications of satellite-derived LST aimed to

analyze the energy budget at the earth surface for

relating evapotranspiration (ET) and soil moisture to

surface temperature from a bare surface (Carlson et al.

1981, Sequin and Itier 1983, Gurney and Camillo 1984).

Goward et al. (1985) suggest using the rate of change in

LST with the amount of vegetation to describe surface

characteristics. The underlying principle for such a

technique is that LST decreases with an increase in

vegetation density through latent heat transfer.

Infrared remotely sensed LST was used in association

with the Normalized Difference Vegetation Index

(NDVI) as a measure of energy balance Bowen ratios

to evaluate land surface resistance and evapotranspira-

tion (Hope et al. 1986, Goward and Hope 1989, Nemani

and Running 1989, Carlson et al. 1990, Nemani et al.

1993) and showed a strong negative relation between

remotely sensed spectral vegetation indices (VIs) and

surface temperature (Goward et al. 1985, Price 1990,

Smith and Choudhury 1991, Friedl and Davis 1994,

Nemani and Running 1997, Wan et al. 2004). Goetz

(1997) reported that the negative correlation between

LST and NDVI, observed at several scales (25 m2 to 1.2

km2), was largely due to changes in vegetation cover and

soil moisture and indicated that the surface temperature

can rise rapidly with water stress.

Many previous applications of coarse-scale remote

sensing data for land cover mapping and land cover

change analysis were based on multi-temporal NDVI

data (Lambin and Ehrlich 1996). Running et al. (1994)

suggested that the addition of LST to spectral VIs can

increase the discrimination of regional land cover

classes. Lambin and Ehrlich (1996) explored the

biophysical justification for such a combination and

concluded that the main reason to perform land cover

mapping and land cover change analysis in the LST–

NDVI space rather than in the more traditional red vs.

near-infrared spectral space is because the former

contains information on many more biophysical attri-

butes and processes of land surfaces than the latter. In

other words, it characterizes land surfaces more

completely than vegetation cover only. The coupling of

LST and NDVI was found to substantially improve land

cover characterization for regional- and continental-

scale land cover classification (Lambin and Ehrlich

1995, Nemani and Running 1997, Roy et al. 1997). As a

metric for land cover change detection, LST/NDVI ratio

metrics were statistically better at detecting changes than

the NDVI metric, confirming the importance of LST

data as a complementary source of information to

NDVI data (Borak et al. 2000).

The conceptual diagram developed by Nemani and

Running (1997) divides the LST–NDVI space into four

simple groups chosen to represent common energy

absorption and exchange characteristics of various land

cover types (Fig. 1). When land covers are stratified

within the LST–NDVI space, an energy exchange

trajectory results, where decreasing vegetation density

is coupled with increasing LST. Disturbance causes

shifts in the LST–NDVI energy exchange relationship

and movement along the disturbance trajectory.

These previous studies took a snapshot or used time

series to track the seasonal trajectory of the LST–NDVI

relationship. However, satellite-derived LST is influ-

enced by synoptic weather variability (wind speed, cloud2 hhttp://faostat.fao.org/i

DAVID J. MILDREXLER ET AL.236 Ecological Applications
Vol. 17, No. 1



cover, humidity, radiation loading, etc.) on a daily, even

hourly, basis, and has high natural variability (Friedl

and Davis 1994, Nemani and Running 1997). Because

our aim was to develop a simple, fast, automated

disturbance detection algorithm for global application,

we consciously chose annual maximum compositing of

LST data in order to remove the information on surface

dynamics related to synoptic weather conditions and

seasonal patterns. By tracking the multiyear annual

maximum composite LST, we focused on the land

surface temperature under driest conditions. We used

EVI because saturation levels are avoided, whereas

NDVI tends to approach saturation level in high

biomass regions, having important consequences for

change detection (Huete et al. 2002).

Ecosystem disturbance theory

Disturbance by definition is an event that occurs

outside the range of natural variability. Therefore, it is

critical to clearly distinguish between disturbance and

the backdrop of natural variability in the development

of a disturbance index. Disturbance processes vary in

their rate of departure from the range of natural

variability. Instantaneous disturbances such as wildfire

result in an immediate departure of the LST/EVI ratio

from the range of natural variability, whereas non-

instantaneous disturbances (e.g., drought, insect defoli-

ation) depart incrementally, or can return toward the

range of natural variability after a brief departure, as in

the case of short-term drought. Ideally, the range of

natural variability is defined by assessing the interannual

variability over a multiple-year data set.

Furthermore, land covers have unique ranges of

natural variability. For example, patterns in interannual

variability of annual net primary productivity (ANPP)

for forested sites are distinctly less variable than in other

biomes, whereas herbaceous plants in arid and semiarid

ecosystems, such as the grasslands of the central United

States, have the capacity for large and rapid production

responses to unusually high or low precipitation levels

(Knapp and Smith 2001, Holmgren et al. 2006). Because

water-limited regions with relatively high production

potential are very sensitive in net primary production

(NPP) in response to variation in precipitation (Huxman

et al. 2004), it is important to assess the interannual

variability over multiple years when defining the range

of natural variability for these ecosystems.

Based on two full years of Aqua and Terra/MODIS

data, we present the initial development of an ongoing

global disturbance monitoring algorithm that will, with

each additional year, more accurately define the range of

natural variability and redefine disturbance. Our objec-

tive was to create an automated system that uses annual

maximum composite LST data to track both positive

FIG. 1. Dynamics of surface temperature (Ts)-Normalized Difference Vegetation Index (NDVI) for various vegetation types
where seasonal trajectories (dashed lines) indicate phenological evolution of vegetation, and the disturbance trajectory is useful for
the detection of change over time. The disturbance trajectory arrow illustrates the negative relationship between the land surface
temperature (LST) and NDVI and the potential for land cover shifts along the energy exchange trajectory as a result of disturbance
(redrawn from Nemani and Running [1997]).
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and negative changes in land surface energy partitioning

while avoiding the natural synoptic variability associat-

ed with daily to seasonal LST. We expect that

disturbance resulting in decreased vegetation density

should lead to an increase in LST as sensible heat flux

increases. Conversely, disturbance resulting in increased

vegetation density (irrigated farmland) should be

coupled with decreasing LST.

METHODS

Disturbance index development

We developed a simple, yet powerful, algorithm to

identify significant interannual changes in surface energy

partitioning. As a result, we used the ratio of annual

maximum composite LST and EVI in order to detect

land surface disturbance, such that

DI LST=EVI ¼
LSTmax=EVImax

LSTXmax=EVIXmax

ð1Þ

where DILST/EVI is the disturbance index (DI) value,

LSTmax is the annual maximum eight-day composite

LST, EVImax is the annual maximum 16-day EVI,

LSTXmax is the multiyear mean of LSTmax, and EVIXmax

is the multiyear mean of EVImax. DILST/EVI is a

dimensionless value that, in the absence of disturbance,

approaches unity.

First, we applied annual maximum value compositing

to the data, selecting independently for each pixel the

maximum eight-day LST and 16-day EVI over a one-

year period. The LSTmax and EVImax values were each

compiled into a separate GIS layer for each year. The

LSTmax during a given year was divided by the EVImax

value during the same year on a pixel-by-pixel basis,

resulting in a ratio of LSTmax to EVImax. Prior to this

division, a baseline boundary condition of 0.025 was

established and all pixels with EVI values less than the

boundary value were reclassified as no data in the 2003

and 2004 maximum EVI images. These values were

primarily associated with water bodies and snow/ice,

and the basic premise that the lower baseline contains

only non-photosynthetic targets (Huete et al. 1999). EVI

values in the lower baseline are problematic in the

calculation of the DI because order-of-magnitude

differences exist between maximum EVI values on an

interannual basis for a given pixel within the baseline

boundary condition, and EVI is in the denominator for

the annual calculation (Eq. 1). Pixels that have good

quality data for only one of the two years were classified

as having ‘‘no data.’’ The 2004 LST/EVI ratio was then

divided by the 2003 LST/EVI ratio on a pixel-by-pixel

basis.

The success of this DI depends on two factors: (1) the

disturbance must generate a large enough signal to detect

and (2) the signal must be greater than the natural

variability. Because 2003 was the first full year of data

collected by the Aqua/MODIS sensor, a multiyear mean-

maximum LST/EVI ratio was not possible at the time of

study. However, as a longer data set becomes available,

the multiyear mean-maximum value computed at each

pixel will better represent the undisturbed energy balance

of the land surface and provide a solid baseline to assess

departure from the range of natural variability.

The logic behind Eq. 1 is illustrated in the conceptual

DI model (Fig. 2). If a given pixel is not disturbed, the

DI will be near unity (e.g., multiyear mean equals 1.0).

However, the energy balance of a land area is not static

and will vary within a range of natural variability

(shown in green). Fluctuations within the range of

natural variability occur during both dry and wet years.

When a major disturbance event, such as wildfire occurs,

LST will increase and EVI will decrease the following

year, resulting in a value that is significantly larger than

the multiyear mean. The disturbance event (shown in

red) is detected as the signal moves outside the range of

natural variability. As the area recovers from distur-

bance, as defined by increasing EVI and decreasing LST,

the bidirectional nature of the DI will track the

incremental change toward recovery and the range of

natural variability (Fig. 2). Annual grasslands are one

exception, because of the potential for quick recovery

and a higher postfire EVI the year following distur-

bance. The general concept that EVI decreases after the

disturbance event is still the same, but the relative time

scale of the recovery process is much quicker. In the case

of irrigation, LST decreases and EVI increases, resulting

in a decreased ratio relative to the multiyear pre-

irrigation energy balance of the land area. Irrigation

disturbance (shown in blue) will be detected as the signal

again moves outside the range of natural variability.

The MODIS instrument and data

As part of the Earth Observing System, the first

MODIS instrument on the Terra platform was launched

on 18 December 1999 and the secondMODIS instrument

on the Aqua platform was launched on 4 May 2002. The

strengths of theMODIS instruments are global coverage,

high geolocation accuracy, high radiometric resolution,

and accurate calibration in the visible, near-infrared and

thermal infrared (TIR) bands (Wan et al. 2004). LST

from the Aqua/MODIS sensor was chosen for this study

because of Aqua’s afternoon overpass time of approxi-

mately 13:30 hours. Compared to the Terra/MODIS

sensor’s overpass time of 10:30 hours, Aqua’s afternoon

overpass retrieves LSTs that are much closer to the

maximum daily temperature of the land surface. Mea-

surements close to the peak of diurnal fluctuation better

reflect the thermal response of rising leaf temperatures

due to decreased latent heat flux as stomata close, and

soil litter surfaces dry, accentuating differences in LST

among vegetation covers. As a result, it is more suitable

for regional and global change studies (Wan et al. 2004).

Radiometric LST is one of the key parameters in the

physics of land surface processes on regional and global

scales, combining surface–atmosphere interactions and

the energy fluxes between the atmosphere and the land
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surface (Mannstein 1987, Sellers et al. 1988). It is defined

as the radiation emitted by the top of the land surface as

observed by MODIS at instantaneous viewing angles

and can be described as ‘‘skin temperature.’’ By

comparison, standard air temperature measurements

are taken 1.5 m above ground level with sensors

protected from radiation and adequately ventilated.

Because air is such a poor heat conductor, the LST in

mid-summer can be 208–308C higher than the standard

weather station temperature.

The LST of clear-sky pixels in MODIS scenes is

retrieved from brightness temperatures in bands 31 and

32 with the generalized split-window algorithm (Wan

and Dozier 1996). TheMODIS LST bands based on TIR

data are only available under clear-sky conditions

because clouds inhibit satellite observations in the visible

and TIR spectral ranges. The increase in quantity and the

improvement in quality of the emissivity and tempera-

ture science data over the global land due to the increased

number of MODIS observations in clear-sky conditions

is a major advantage of the Aqua/MODIS data (Wan et

al. 2004) and has resulted in a vastly improved LST

product compared to the NOAA Advanced Very High

Resolution Radiometer (AVHRR) data that have been

used to derive LST in previous studies.

The data set is composed of Aqua/MODIS eight-day

composite daytime LST and Terra/MODIS 16-day

composite EVI data for 2003–2004, and Terra/MODIS

Land Cover Type 1 (IGBP) data. We used Terra/

MODIS EVI because morning and afternoon overpass

data sets can be interchangeably used for continental

scale coverage (D. J. Mildrexler, personal observation)

and the Terra EVI data was readily available in our data

archives. All MODIS data used for this study are the

most recently processed Collection 4 data with a spatial

resolution of 1 km. MODIS quality control flags were

used for the LST and EVI data. The Hierarchal Data

Format-Earth Observation System (HDF-EOS) data

were then converted to raster images for further analysis.

Testing the disturbance index

Keeping in mind that the DI is designed for global

implementation, we tested the algorithm in the western

United States, extending from the Pacific Coast to east

of the Rocky Mountains (Fig. 3). The study domain

encompasses one of the strongest hydrologic gradients

FIG. 2. The DILST/EVI algorithm (where DI is the disturbance index, LST is the land surface temperature, and EVI is the
Enhanced Vegetation Index) with a conceptual model illustrating the energy balance of a given land area through time. Under
normal conditions, the current-year LSTmax and EVImax values will be similar to the multiple-year mean-maximum values,
indicated by the multiyear mean of 1.0. Normal conditions exist within a range of natural variability that is defined by fluctuations
between wet and dry years (green zone). Disturbance causes changes in the current-year LSTmax and/or EVImax values. In the case
of wildfire, the LSTmax increases and the EVImax decreases, resulting in a larger current-year ratio relative to the multiyear mean
and a divergence from the range of natural variability (red zone). If the LSTmax decreases and the EVImax increases from irrigation,
the current-year ratio will become smaller than the multiyear mean, resulting in divergence from the range of natural variability
(blue). The bidirectional aspect of the DI allows for the tracking of recovery as the maximum LST/EVI ratio returns toward the
multiyear mean.
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in the country and a broad range of bioclimatic regions,

including the Pacific Northwest rain forests, the Great

Basin, the Intermountain region, the High Plains, and

the southwestern deserts.

Relationship between land cover stratified

mean-maximum LST and EVI

To evaluate the biophysical relationship between

maximum LST and maximum EVI across the study

area in the LST–VI space, we calculated the land cover

stratified mean-maximum LST and EVI. The MODIS

land cover was used to assign pixels to a land cover type.

This provided a consistent grouping method and the

means to explore land cover stratified energy balance

relationships in the LST–VI space across the western

United States. Computation of the mean-maximum LST

and EVI for each land cover class included every pixel in

the study domain (excluding water and snow/ice). The

mean-maximum LST was calculated as the sum of the

highest temperature at each pixel during an annual

period within a given land cover type divided by the

number of pixels within that land cover type. The mean-

maximum EVI was computed in a similar manner. The

land cover stratified mean-maximum LST and the mean-

maximum EVI data were tested for normality. To test

the significance of the relationship between EVI and

LST at the continental scale, Pearson’s correlation

analysis (r) was used, and the confidence limits (CL)

surrounding r were calculated (Zar 1996).

Comparison of DI to wildfire perimeter maps

Wildfire often results in an abrupt, clearly defined

boundary between the disturbed and undisturbed

portions of the landscape and provides a negative

disturbance (i.e., reduces vegetation cover) with inde-

pendently confirmed, well-documented data sets for

verification. We verified the DI results based on the

demonstration of close association with fire perimeter

maps from the Northern Rockies Coordination Group

(available online)3 and the United States Forest Service.

Fire perimeters were obtained by interpretation of

infrared imagery, aerial and field-based Global Posi-

tioning System surveys, and on screen digitization.

While fire perimeter maps do provide a high resolution

data set for evaluating the periphery of fires, they do not

differentiate between unburned and burned areas within

the fire perimeter. Fire perimeter maps for the 2003 fire

season include numerous fires in the Northern Rockies

of Montana, the Needles and Fawn Peak Fires in the

North Cascades of Washington, the Booth and Bear (B

and B) Fire in the central Cascades of Oregon, and

several fires in the Coast Ranges of California. We also

compared DI results to the 2003 1-km resolution

MODIS active fire detections data (Giglio et al. 2003).

The MODIS fire detections data are a daily product that

identifies active fires at the time of satellite overpass,

requiring sophisticated masking techniques to avoid

excessive false alarms and provide real-time information

that is necessary for fire management purposes. The

MODIS active fire detections are discerned using the

1-km thermal bands of MODIS, and detections are

provided as the centroids of the 1-km pixels.

Additionally, the DI was designed to detect changes in

vegetation cover associated with recovery of disturbed

areas. Wildfires from 2002 occurred prior to the Aqua/

MODIS LST data used for this study and provide an

opportunity to evaluate recovery from 2003 through

2004. Recovery was verified using fire perimeter maps

from 2002, including the Biscuit Fire in southwest

Oregon, the Rodeo Chediski Fire in east–central

Arizona, and the 2002MODIS active fire detections data.

DI response to irrigated plantation

As an example of positive disturbance, we examined

one of the most heavily irrigated crops in the Columbia

River Basin (Populus spp. tree farm) and the directly

adjacent area of semiarid natural vegetation in eastern

Oregon’s high desert. By examining the maximum LST

and EVI values over such a contrasting scene, we can

begin to understand the response of the LST/EVI ratio

to irrigation. The location of the poplar tree farm (45.88

N, 119.58 W) was confirmed with 15-m resolution

ASTER imagery and identified with MODIS land cover

classification data. Two five-pixel transects were estab-

lished; one within the poplar tree farm, classified as

deciduous broadleaf forest (DBF), and one within the

adjacent native plant community, classified as a mixture

of open shrublands (OS) and grasslands (G). We

extracted the maximum LST and EVI value at each

pixel along both transects. We then computed the

average maximum LST and EVI for both transects.

Finally, we computed the LST/EVI ratio and compared

the difference between land covers.

DI response to climatic variability

Previous studies have shown that the response of

vegetation to climatic variability can vary greatly across

ecosystems and that annual herbaceous ecosystems (e.g.,

grasslands and croplands) display the greatest interan-

nual variability in ANPP under natural precipitation

patterns (Knapp and Smith 2001). White et al. (2005)

used 13 years of NDVI data to examine the interannual

vegetation variability over the continental United States

and identified the High Plains, the Snake River Plain,

and the Columbia Plateau in the western United States

as areas of high vegetation variability. To explore the

response of the DI to climate variability, we used

precipitation anomaly maps for 2003 and 2004 from the

Spatial Climate Analysis Service Prism data collection

(available online).4 Precipitation anomaly maps show

3 hhttp://www.fs.fed.us/r1/firegis/2003web/dataindex.htmi 4 hhttp://www.ocs.oregonstate.edu/index.htmli
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precipitation as a percentage of the normal precipitation

between 1971 and 2000 at a 4-km resolution.

RESULTS

Basic biophysical relationship between

mean-maximum LST and EVI

The land cover class stratified mean-maximum EVI

and mean-maximum LST over the western United

States for 2003 through 2004 were strongly negatively

correlated (r¼�0.81 6 0.23; Fig. 4) with 95% confidence

(P � 0.001). The land cover stratified grouping of the

mean-maximum LST and EVI in the LST–VI space was

similar to the groups hypothesized by Nemani and

Running (1997: Fig. 1). Water-limited biomes (barren,

shrublands) occupy the high-LST/low-EVI area of the

LST–VI space. Land cover classes characterized by

annual herbaceous vegetation (grasslands, savanna, and

FIG. 3. Testing the DI across the western United States, a study domain that encompasses a broad range of bioclimatic regions
and contains one of the strongest hydrologic gradients in North America (MODIS tiles h08v04, h08v05, h09v04, h09v05, and
h10v04). Land cover classes are from the Terra/MODIS Land Cover Type 1 (IGBP).
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croplands) occupy the center of the LST–VI space.

Atmospherically coupled land covers (forests, wetlands)

occupy the low-LST/high-EVI area of the LST–VI

space. A summary of land cover stratified mean-

maximum LST and EVI values and their standard

deviation is given in Table 1.

Application of the DI algorithm

We applied the DI algorithm to the MODIS data for

the years 2003 and 2004 across the western United States.

The mean DI value for the entire study area (0.99) with

all pixels combined was rounded to 1.0. The DI scale

extended from 0.2 to 4.0. The range of natural variability

was defined as the values that were within one standard

deviation (60.32) of the mean (1.0). Any values within

the range of natural variability (0.68–1.32) were mapped

as no color. Values .1.32 (mapped in orange) and 1.64

(mapped in red) indicate that the DI results were one or

more standard deviations above the mean and coincide

with disturbances such as wildfire scars and precipitation

deficit anomalies. Values ,0.68 (mapped in light blue)

and 0.36 (mapped in dark blue) indicate that the DI

results were one or more standard deviations below the

mean value and coincide with recovery of disturbed

landscapes or precipitation surplus anomalies.

Wildfire detection: DI . 1.0

Fire is the prominent disturbance event in the western

United States, and large wildfires occurred throughout

the study area in 2003. We examined the correspondence

between the DI and case examples where precise

knowledge of the spatial extent of wildfires is well

FIG. 4. Every 1-km pixel, excluding water and snow/ice, within the western United States study domain was included within the
land cover stratified mean-maximum values displayed in the LST–EVI space. The energy balance relationship and land cover
grouping are similar to the disturbance trajectory and four simple groups conceptualized by Nemani and Running (1997; see Fig.
1). Correlation is given with 95% CI.

TABLE 1. Biome stratified mean-maximum Enhanced Vegetation Index (EVI) and mean-maximum land
surface temperature (LST) with standard deviations in parentheses for 2003 and 2004.

2003 2004

Land cover EVImax (SD) LSTmax (SD) EVImax (SD) LSTmax (SD)

ENF 0.42 (0.12) 33.4 (5.5) 0.41 (0.11) 31.1 (5.3)
EBF 0.59 (0.14) 32.7 (6.1) 0.56 (0.13) 31.9 (5.2)
DNF 0.49 (0.08) 34.9 (4.3) 0.48 (0.08) 32.0 (4.3)
DBF 0.54 (0.11) 36.3 (5.7) 0.53 (0.11) 34.7 (5.7)
MF 0.48 (0.11) 34.6 (5.4) 0.48 (0.11) 32.5 (5.0)
CS 0.21 (0.09) 50.9 (6.9) 0.20 (0.08) 48.8 (6.8)
OS 0.21 (0.10) 52.6 (6.4) 0.21 (0.10) 50.2 (6.7)
WSAV 0.36 (0.12) 42.8 (6.7) 0.34 (0.11) 40.7 (6.0)
SAV 0.50 (0.12) 44.2 (7.4) 0.47 (0.12) 43.1 (7.9)
G 0.27 (0.11) 49.4 (5.6) 0.26 (0.11) 46.4 (5.9)
PWET 0.43 (0.18) 33.2 (9.4) 0.39 (0.19) 32.7 (8.8)
C 0.52 (0.13) 43.6 (4.8) 0.50 (0.13) 41.6 (5.5)
URB 0.28 (0.11) 47.2 (5.7) 0.26 (0.09) 46.5 (5.7)
C/NAT 0.41 (0.10) 45.0 (3.8) 0.38 (0.11) 40.9 (4.7)
BAR 0.13 (0.09) 54.3 (7.5) 0.13 (0.09) 52.2 (7.7)

Note: See Fig. 3 for explanations of all land cover abbreviations.
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known. The spatial association between the high values

(.1.64) detected by the algorithm and the fire perimeter

maps (black outlines) are shown in Fig. 5. The DI clearly

detects disturbance that shows close correspondence

with the fire perimeter maps for the Padua, Grand Prix,

and Old Fires in southern California (Fig. 5a, b), the

Needles and Fawn Peak Fires in Washington (Fig.

5c, d), and the B and B Fire in Oregon (Fig. 5e, f ). Note

that the fire perimeter maps for the Needles and Fawn

Peak Fires (Fig. 5d) and the B and B Fire (Fig. 5f ) cover

a slightly larger surface area than the DI. Fire perimeter

maps often overestimate total burned area because they

include unburned ‘‘islands’’ within the fire perimeter as

burned. The DI is based on pure radiometry and could

FIG. 5. Wildfire detection results showing a detailed comparison with independently confirmed, well-documented fire perimeter
maps (black outlines) for the (a, b) 2003 southern California fires, (c, d) Washington’s Fawn Peak and Needles Fires, and (e, f)
Oregon’s B and B Complex Fires. These fire perimeters were obtained by interpretation of infrared imagery, aerial and field-based
Global Positioning System surveys, and on-screen digitization. High values detected by the disturbance index (DI .1.64) indicate a
large divergence from the range of natural variability.
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provide more accurate information on the spatial extent

and severity of wildfire.

The MODIS fire detection data and fire perimeter

maps were used together to evaluate the DI results

across a larger area. Numerous wildfires burned around

Missoula, Montana, during the 2003 wildfire season.

The high values (.1.64) detected by the algorithm show

close correspondence with the 2003 fire perimeter maps

and MODIS fire detection data (Fig. 6b, black dots).

The 2003 southern California fires provided a good

opportunity to assess the DI results in a mixed land

cover area, including savanna and shrublands, two of

the land covers with the highest frequency of major

disturbance on the global scale (Potter et al. 2003). The

2004 maximum LST increased in the areas disturbed by

the 2003 wildfires (data not shown), and the DI clearly

distinguished these areas from the surrounding land-

scape (Fig. 6c). The high values (.1.64) detected by the

DI are tightly coupled with fire perimeter maps and the

MODIS fire detection for the 2003 California wildfires

(Fig. 6d). However, there are areas within the fire

perimeter maps that the DI detects as disturbance and

the MODIS active fire detections data does not. Further

research should be done using case examples where

precise knowledge of the spatial extent, severity, and

unburned areas within the fire perimeter are known to

determine if the DI is detecting disturbance that the

MODIS active fire detections is missing.

Disturbance recovery detection

Tracking recovery of disturbed areas is important for

understanding how much of the land surface is in a state

of recovery at any one time, how long recovery takes,

and if recovery to the pre-disturbance range of natural

variability is occurring. The Biscuit and Rodeo Chediski

Fires of 2002 occurred primarily in evergreen needleleaf

forest (ENF) and prior to the first full year of Aqua/

MODIS data collection (2003). With only two years of

data defining the range of natural variability, we

calculated the ENF land cover class stratified DI

standard deviation (0.24) to more accurately represent

the range of natural variability for ENF. The DI

FIG. 6. Correspondence between the DI results, the MODIS active fire-detection data (black dots) and fire perimeter maps
(black outlines) for (a, b) the 2003 wildfires near Missoula, Montana, and (c, d) the 2003 southern California wildfires. The
southern California fires occurred in savanna and shrublands, vegetation types with the highest frequency of major disturbance at
the global scale. The maximum LST increased in the fire areas in 2004, and the DI detected the increase relative to 2003.
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detected recovery from 2003 to 2004 illustrated by the

low values (,0.76) that correspond with fire perimeter

maps for the Biscuit and Rodeo Chediski Fires

(Fig. 7a, b). The lowering of the 2004 LST/EVI ratio

due to the increase in EVImax and decrease in LSTmax

relative to 2003 is strong evidence that revegetation of

burned areas is identified by the DI. Recovery is found

coinciding with the 2002 MODIS fire detection data

throughout the western United States.

Detection of irrigated plantations: DI , 1.0

Just as wildfire provides a negative disturbance that

causes abrupt temporal and spatial changes to vegeta-

tion structure and surface energy partitioning, irrigation

in semiarid and arid environments provides a clearly

defined positive disturbance to evaluate. The poplar tree

farm, located within the continental interior semiarid

climate of northeast Oregon, is classified as deciduous

broadleaf forest (DBF) by the MODIS land cover

(Fig. 8a). The MODIS EVI product clearly shows the

dense vegetation of the poplar farm study area (EVI ¼
0.66–0.99; Fig. 8b) relative to the adjacent OS and G

covers (EVI ¼ 0.15–0.32).

The poplar tree farm can be seen in the lower left of

the 15-m resolution ASTER image as dark red blocks

that sharply contrast with the surrounding landscape

(Fig. 8c). The Columbia River bisects the top of the

image and various agricultural lands, as well as

undeveloped areas, surround the heavily irrigated tree

plantation. The maximum LST of the poplar tree farm

for 2003 and 2004 is 33.08C and 36.08C, respectively, and

is significantly different from the adjacent mixed OS and

G transect (60.48C and 59.48C, respectively) with 97%

confidence (P � 0.001). The nearly 308C difference in

maximum LST between these adjacent land cover types

highlights the influence of vegetation cover on LST.

Furthermore, the 2003 LST/EVI ratio for the semiarid

area is ;250, more than six times greater than the

poplar tree farm LST/EVI ratio (40). This illustrates the

dramatic impact that irrigation can have on a landscape

and the resulting LST/EVI signal.

Test of DI for the western United States

Based on only two years of data (2003 through 2004),

the continuous DI results for the western United States

study area are shown in Fig. 9. Anomalous patterns

emerge, especially over the High Plains region, the

Columbia River Plateau, and in parts of the southwest-

ern United States. As discussed earlier, accurately

distinguishing disturbance from natural variability is

the most difficult challenge in developing a disturbance

index. Interannual precipitation variability is one of the

most common forms of natural variability, and we

assessed the impact of precipitation anomalies during

2003 and 2004 on the DI results. As additional years of

data become available, the zone of natural variability

will be more accurately defined, and we can further

investigate the persistence of these anomalies. If

conditions persist, the impact of weather variability on

the DI could mark the onset of non-instantaneous

disturbance events, such as drought.

Climate variability analysis: the High Plains

The DI results for the northern High Plains show high

values extending throughout southeastern Montana,

northeastern Wyoming, southwestern North Dakota,

and western South Dakota (shown in orange and red in

Fig. 10a). This area is dominated by grasslands and

croplands, land cover types with high sensitivity to

interannual precipitation. Precipitation anomaly maps

for the same area show average precipitation in 2003

(Fig. 10b) followed by a widespread decrease to 51–70%

FIG. 7. Fire perimeter maps for (a) the Biscuit and (b) Rodeo Chediski Fires of 2002. After one year of recovery, the low DI
values (,0.76) over large portions of the fire areas illustrate the change in the LST/EVI ratios resulting from revegetation from 2003
to 2004. The wildfires occurred prior to the data used for this study, but recovery is an incremental process and will continue until
the LST/EVI ratio returns to the range of natural variability.

January 2007 245CONTINENTAL DISTURBANCE DETECTION METHOD



and 71–90% of normal precipitation in 2004 (Fig. 10c).

In response to the precipitation deficit, the EVImax

values decreased in 2004 relative to 2003. This increased

the 2004 LST/EVI ratio relative to 2003, and resulted in

DI values greater than one.

Results for the southern High Plains show a large area

with low DI values extending throughout much of New

Mexico, southern Colorado, and western Texas

(mapped in blue in Fig. 10d). This area has values

greater than one standard deviation below the mean,

indicating that the 2004 LST/EVI ratio was less than the

2003 LST/EVI ratio. Precipitation anomaly maps show

widespread deficit (31–50% and 51–70% of normal) in

the southern High Plains region during 2003 (Fig. 10e),

followed by 171–200% of normal precipitation in 2004

(Fig. 10f ). The temporal and spatial correspondence

between a large precipitation surplus anomaly and a

significant increase in ANPP in grasslands is strong

evidence that the DI is responding to interannual

rainfall in this area.

DISCUSSION

We have described in detail a new algorithm for

global, automated disturbance detection using MODIS

1-km LST and EVI data and examined the results at

multiple scales. The annual changes in the maximum

LST/EVI ratios closely correspond to wildfire perimeter

maps across the study area (Fig. 5), highlighting the

potential for the DI to provide detailed, accurate

information on the location and spatial extent of

wildfire. At the regional scale, the strong correspondence

between MODIS fire detection data and disturbance

FIG. 8. (a) A heavily irrigated poplar tree farm in northeast Oregon, classified as deciduous broadleaf forest (in red) by the
MODIS Land Cover image, grows immediately adjacent to the natural semiarid vegetation, classified as open shrubland and
grassland. (b) Maximum LST and EVI values were extracted along two transects (shown in black) and the LST/EVI ratios
compared. See Fig. 3 for explanations of land cover abbreviations. (c) The ASTER image (15 m) shows the sharp contrast between
the poplar tree farm (lower left, dark red squares) and the neighboring natural vegetation (upper right, gray area). As indicated by
the large difference in the LST/EVI ratios, initiation or stopping of irrigation in a semiarid landscape would be clearly detected by
the DI.
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detected by the DI illustrates the potential of the DI to

detect disturbance over large spatial areas (Fig. 6). The

continuous DI results across the western United States

study domain showed anomalous values in annual

herbaceous ecosystems (e.g., High Plains, Columbia

River Plateau) driven by variability in ANPP in response

to precipitation anomalies (Fig. 10). For land covers

with large interannual variability in ANPP (e.g.,

grasslands, croplands), two years of data is insufficient

for defining the range of natural variability because

fluctuations that would eventually fall within the range

of natural variability with a longer data set are

incorrectly detected as disturbed. We are optimistic

that, with additional years of data, the range of natural

variability for annual herbaceous ecosystems will be

redefined to incorporate this interannual variability and

avoid false disturbance detections. For example, with

five years of data, the current year ratios of maximum

LST to EVI will be evaluated against four-year averages

that will be computed on a pixel by pixel basis.

Interannual variability over the four-year period will

define a given pixels range of natural variability, and

whether an event is detected as disturbance.

The strong negative correlation found between the

mean-maximum LST and the mean-maximum EVI

across the western United States from 2003 through

2004 (Fig. 4) supports the principle that surface

temperature decreases with an increase in vegetation

density through transfer of energy to latent heat. The

strength of this relation found at the continental scale in

FIG. 9. With only two years of data (2003 through 2004), we present the continuous DI results for the western United States
using 1.0 standard deviation (0.32) from the mean (1.0) to define the range of natural variability. In addition to high values
associated with wildfire (see Fig. 5) and recovery (see Fig. 7), large areas are detected as disturbed in the High Plains and in the
Columbia River Plateau. We did not consider interannual variability an ecological disturbance; additional years of MODIS data
will help this automated algorithm separate normal variability from disturbance in annual herbaceous ecosystems.
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a bioclimatically diverse area suggests that the DI is

founded on universal principles. This robust and

consistent radiometric relationship will be revisited for

each individual pixel at the global scale every year. The

power of this approach is that, over time, each pixel is

self-normalized, defining its own range of natural

variability. Monitoring at the global scale will be

economical and simple because the DI is computation-

ally inexpensive and highly repeatable.

Over a three-year period, evidence of revegetation of

burned areas can be clearly identified and mapped (Fig.

7). This result suggests that the DI algorithm is sensitive

to the incremental annual changes associated with the

return of the annual maximum LST/EVI ratio to the

range of natural variability. Biomes have different

strategies for recovery, and, thus, the rate of recovery

of different ecosystems varies. For example, following

wildfire, certain chaparral species can recover quickly by

re-sprouting from carbohydrate-rich root burls, whereas

pine forests regenerate more slowly and from seed. The

length of time for a pixel to return to the range of

natural variability defines the length of recovery. In a

rapidly changing world, tracking recovery over the earth

surface could aid in understanding the natural differ-

FIG. 10. The High Plains region is composed of grasslands, croplands, and open shrublands, annual herbaceous ecosystems
that display high interannual variability in annual net primary productivity (ANPP) in response to precipitation variability. (a) In
the northern High Plains, anomalously high DI values (in orange and red) extend over a large area. (b, c) Precipitation anomaly
maps show that the same area received normal precipitation levels in 2003 (b), followed by 51–70% and 71–90% of normal
precipitation over large areas in 2004 (c). (d) The southern High Plains region shows low DI values (in light and dark blue) that
extend over a large area. (e, f ) Precipitation in this area was 31–70% of normal in 2003 (e), followed by 151–200% of normal in 2004
(f ). Maps copyright � 2004 and 2005, PRISM Group, Oregon State University hhttp://ocs.oregonstate.edu/prismi. Panels a, b, and
c were created 2 Aug 2004; panels d, e, and f were created 11 May 2005.
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ences that occur within similar and contrasting ecosys-

tems on a global basis.

The positive disturbance analysis illustrates that both

variables in the DI algorithm respond to the biophysical

impacts of irrigation (Fig. 8c). Even if pre-disturbance

information on a given irrigated area is not available, if

irrigation ceases or changes significantly, the DI will

detect the change in energy exchange dynamics and

vegetation density and redefine the range of natural

variability and disturbance for that area. Tracking

changes in irrigated lands globally could provide

valuable information as demand for freshwater resourc-

es continues to grow, with concomitant implications for

food scarcity.

CONCLUSIONS

We have described and tested a computationally

efficient, automated algorithm for systematic global

disturbance detection. It is based on annual maximum

composite Aqua/MODIS LST and Terra/MODIS EVI

data that avoids the high natural variability associated

with tracking LST over short temporal periods. In

future implementations of this DI algorithm, we suggest

use of the Aqua sensor for both LST and EVI for

simplicity of processing. The DI is based on two sound

fundamental principles: (1) that vegetation, when left

undisturbed, will achieve maximum coverage for a

specified environment, and (2) that disturbance of

vegetation will result in a significantly different surface

coverage and a commensurate change in the maximum

surface temperature. The maximum LST/EVI ratio

takes into account both the potentially most vulnerable

biotic (vegetation) and abiotic (LST) components of the

terrestrial ecosystem to disturbance.

The ability of the DI to accurately detect the location

and spatial extent of disturbance across broad scales and

over various biomes as seen in this study suggests that

the DI could serve as a ‘‘first-look’’ disturbance

detection algorithm at the global scale. Information on

the location and spatial extent of disturbance events and

recovery globally could help to reduce some of the

uncertainty in understanding the contribution of these

events to the global carbon cycle.

A limitation of the annual maximum compositing

methodology of the DI algorithm was found in annual

herbaceous ecosystems with the potential for very rapid

rates of post-disturbance recovery. These ecosystems

regularly have a higher postfire EVI the year following

disturbance. The DI concept of EVI decreasing after

disturbance would work right after the disturbance event,

suggesting the need for a shorter time composite. A

seasonal calculationmay need to be incorporated into the

algorithm for annual herbaceous dominated land covers.

The DI will continue to refine the range of natural

variability with each additional year of data. This will

provide a solid basis from which to assess departure of

disturbance events from, and recovery of ecosystems to,

the normal condition. Disturbance detection in ecosys-

tems with high interannual variability will be signifi-

cantly improved. The next step is to implement this
methodology globally and explore the changes in the

range of natural variability over a multiyear data set.
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