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Previous work has shown that tree turnover, tree biomass and large liana densities have increased in
mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest
ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and
biodiversity. However, the findings have proved controversial, partly because a rather limited number of
permanent plots have been monitored for rather short periods. The aim of this paper is to characterize
regional-scale patterns of ‘tree turnover’ (the rate with which trees die and recruit into a population) by
using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess
whether concerted changes in turnover are occurring, and if so whether they are general throughout the
Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven
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by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit
and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of
eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two
decades; (iii) mortality and recruitment rates have both increased significantly in every region and environ-
mental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently
exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western
Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial
patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends
cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death)
because the biomass in these forests has simultaneously increased. Our findings therefore indicate that
long-acting and widespread environmental changes are stimulating the growth and productivity of

Amazon forests.
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1. INTRODUCTION

Ecosystems worldwide are changing as a result of myriad
anthropogenic processes. Some processes are physically
obvious (e.g. deforestation), others may be less so but also
affect biodiversity (e.g. fragmentation, hunting). Atmos-
pheric changes such as increasing CO, concentrations,
increasing temperatures and altered rates of nitrogen
deposition are changing the environment of even remote
regions. Anthropogenic atmospheric change will certainly
become more significant through the century, as atmos-
pheric CO, concentrations will reach values unpre-
cedented for at least 20 or even 60 million years (Retallack
2001; Royer er al. 2001). Nitrogen-deposition rates and
climates are predicted to move far beyond Quaternary
envelopes (Prentice ez al. 2001; Galloway & Cowling
2002).

Although we are able to measure most of these physical
and chemical drivers with reasonable accuracy and pre-
cision, quantifying possible ecological responses to atmos-
pheric change is an extremely difficult task. The task is
particularly urgent in the tropical forests, as a high pro-
portion of the Earth’s biodiversity, plant carbon stocks and
forest productivity is centred within this biome (Malhi &
Grace 2000). The principal means of monitoring ecologi-
cal processes within mature forests is with permanent sam-
ple plots, but the network of assessment and monitoring
sites has traditionally been sparse, spatially aggregated and
poorly integrated at regional scales. Over the past decade
we have sought to overcome these limitations by
developing collaborative networks of researchers: recog-
nizing that by pooling local efforts and small-scale datasets
we can start to answer large-scale questions. In particular
the Amazon Forest Inventory Network (RAINFOR, see
http://www.geog.leeds.ac.uk/projects/rainfor/), which was
established in 2000, seeks to document and understand
patterns and changes in mature Amazon forests on both
spatial and temporal scales (Malhi er al. 2002).

Earlier large-scale analyses have suggested that signifi-
cant changes occurred in the structure and function of
mature tropical forests by the close of the twentieth cen-
tury. For example, turnover rates of trees in mature trop-
ical forest plots increased throughout the 1980s and early
1990s (Phillips & Gentry 1994; Phillips 1996). This trend
was demonstrated separately for both the neotropics and
the palaeotropics, with the changes appearing to be gener-
ally immune to concerns such as the effect of individual
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ENSO cycles (Phillips 1995; cf. Sheil 1995a), bias
towards high-biomass ‘majestic forest’ when plots are
established (Condit 1997; Phillips er al. 1997), damage
caused by botanical collecting (Phillips ez al. 1998a; cf.
Sheil 1995b) and census-interval artefacts (Lewis et al.
2004c; cf. Sheil 1995a). In a set of forest plots in Ama-
zonia that largely overlaps with that used in the neotrop-
ical turnover dataset, we have also shown that the
structure and composition of mature non-fragmented for-
ests are changing, with an increase in the biomass of trees
(Phillips ez al. 1998b; Baker et al. 2004b; but see Clark
2002; Phillips er al. 2002a) and in the density and relative
dominance of large lianas (Phillips er al. 20025). Taken
together, these results imply that changes in structure, com-
position and dynamics are common manifestations
reflecting a profound shift in the overall ecology of tropical
forests. However, to fully test the proposition that ecologi-
cal processes in mature tropical forests are changing sys-
tematically, additional evidence needs to be evaluated
against two sets of criteria.

(1) Are the changes observed so far concerted across
space and time? Are they geographically coincident
(occurring together in the same forest region and
sites), geographically widespread (occurring across
spatial and environmental gradients) and temporally
robust (occurring over protracted periods of time
and relatively insensitive to short-term climatic
fluctuations)?

(i) Can the phenomena be explained in terms of under-
lying ecological processes, such as growth, mortality
and recruitment? Specifically, is the increase in turn-
over driven by changes in recruitment or mortality,
or both? Is the increase in above-ground biomass
driven by greater basal area growth or reduced basal
area death? Are these ecological processes consistent
with one another and with possible mechanistic driv-
ers?

In this paper, we provide a much fuller description of
the patterns of tree turnover than has been possible so far,
concentrating on Amazonia which comprises more than
half the world’s remaining area of humid tropical forest
and where changes in tree and liana biomass have pre-
viously been demonstrated. We explore aspects of the two
sets of criteria described above, and show results before
and after accounting for potentially important artefactual
sources of error. Companion papers (Lewis et al. 2004a,b)
develop a conceptual framework that links plausible
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physical and chemical mechanistic drivers to predicted
changes and present tests for the phenomena that comp-
lement the approach taken here. We define ‘turnover’ as
the rate with which trees move through a population (the
flux) in relation to the number of trees in the population
(the pool), and estimate this flux by the mean rate with
which they recruit and die.

In this paper our specific aims are to determine the

following.

(i) The extent to which turnover rates have changed (or
not) throughout the Amazon Basin. (Note that the
turnover increase has so far only been shown for the
neotropics and palaeotropics as a whole).

(i1) If there are consistent patterns in the changes in
turnover rates across the different climatic, edaphic
and geographical regions within Amazonia.
(Amazon forests vary greatly, so it is important to
know if the patterns of change vary too.)

(iii) Whether these changes are driven by recruitment
rate changes, mortality rate changes or both.
(Turnover changes in neotropics and palaeotropics
have only been shown so far in aggregate, and have
not been deconstructed into component processes.)

Addressing these questions first requires careful con-

sideration of possible sources of error, and correcting for
these where possible. Potential sources of error stem from
the differing census intervals with which plots are moni-
tored, the timing of censuses, the possible tendency of for-
esters and ecologists to select good-looking, high-biomass,
mature-phase patches for plots (‘majestic forest’), and
changes through time in the spatial and environmental
distribution of available datasets (‘site-switching’). In § 2
we describe how we have attempted to address these prob-
lems, but first we briefly review these concerns.

Turnover rates are sensitive to the length of interval

over which they are measured and the actual timing of
censuses in at least four ways. First, individual stem death
and recruitment are discrete events. This means that over
progressively shorter intervals, estimates of rates depart
disproportionately from long-term trends as a function of
when census dates fall in relation to individual tree deaths
and the local forest gap-phase cycles: short intervals there-
fore introduce more random noise (Hall ez al. 1998).
Second, detecting new recruits and deaths is not always
straightforward. Over shorter intervals the error associated
with determining recruitment increases because a larger
proportion of ingrowing stems are close to the minimum
size threshold of 10 cm, which increases the relative
impact of stem hydration fluctuations or measurement
error on recruitment estimates (Sheil 19955). Similarly,
measurement errors of mortality rates may increase
because proportionally greater fractions of apparently
dead trees will be ‘barely alive’ or ‘just dead’. However,
over longer time intervals the precision of recruitment and
mortality estimates declines as more trees will have
recruited and died undetected in the interval. Third, sea-
sonality and regional and global-scale climate fluctuations
such as ENSO events generate intra-annual and supra-
annual fluctuations in stem hydration (e.g. Baker er al.
2002), growth rates and mortality probabilities (e.g.
Nakagawa ez al. 2000), so the timing of the census can
affect the rates measured in each interval. Finally, the
cohort of stems dying over short intervals is represented
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disproportionately by intrinsically short-lived trees, so
shorter census intervals are biased to record higher turn-
over rates than longer intervals. Sheil & May (1996) pro-
vide a theoretical discussion of this effect. Lewis er al.
(2004c¢) developed an empirical quantification of its sig-
nificance but found that it probably cannot account for
published findings of increased turnover.

Additional methodological issues that have been sug-
gested to account for increased turnover include possible
biases in the way that plots are selected on local, regional
and global scales. Locally, some sites could be affected by
a ‘majestic forest’ artefact, if ecologists preferentially select
mature-stage forest when establishing plots (Phillips &
Sheil 1997; Phillips ez al. 1997, 2002a). Such plots would
subsequently undergo locally accelerated dynamics as
large trees die, killing smaller trees and improving the light
environment for new recruits. On much larger scales,
regionally and globally aggregated turnover results could
be biased by unequal sampling of forest types across time
(‘site-switching’). In large multi-site datasets, site-switch-
ing is inevitable because plots are monitored at different
times for different lengths in different environments and
different parts of the world. For example, in the dataset
used in Phillips (1996) the average monitoring date for
palaeotropical forest plots was 1971, whereas for neotrop-
ical plots it was 1982 (Lewis er al. 2004c¢). If the nature
of the site-switching is such that inherently more dynamic
forests have been monitored more recently than less
dynamic forests, then simply correlating turnover rates
with time may lead to type I error: the erroneous con-
clusion that forests as a whole are becoming more dynamic
when in fact they are not (Condit 1997).

A final concern that has been raised is that the stochas-
tic nature of forest dynamics makes it very difficult to use
small plots to detect signals of change (e.g. Hall er al.
1998). This is undoubtedly true. However, we have shown
before that our approach of looking for aggregate effects
across many plots can overcome this difficulty (e.g. Phil-
lips & Gentry 1994; Phillips 1996). We wish to emphasize
that the null hypothesis being tested here is not that ‘tree
turnover rates have not increased within a specific, individ-
ual site’. Rather, it is that ‘tree turnover rates have not
systematically increased across all sites in a region’.

2. METHODS

(a) Site selection

The region considered is the Amazon river basin and contigu-
ous forested areas, including all mature forest except for that
which has experienced obvious anthropogenic disturbances
(logging, fragmentation and fires) and excluding small forest
patches in forest-savannah mosaic landscapes. Data were
obtained from published sources where available, but most data
analysed are from unpublished permanent monitoring plots
maintained by the authors, across sites in Bolivia, Brazil,
Ecuador, French Guiana, Peru and Venezuela. Together, these
forests constitute a substantial proportion of the RAINFOR
Amazon forest inventory network (Malhi et al. 2002). The
criteria used for selecting appropriate tree turnover data include
a minimum initial population of 200 or more trees, 10 cm or
greater diameter, a minimum area of 0.25 hectares (ha, where
1 ha=10*m? and a minimum monitoring period of 2 years.
Most reported data are much more substantial than these values
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might suggest: among the plot data analysed, the mean (and
median) values of the initial population are 954 (572) trees, the
area monitored averages 1.7 (1.0) ha and the monitoring period
averages 10.1 (9.6) years. These plots are mostly replicates from
within different landscapes across Amazonia, with each plot sep-
arated from others in the same landscape by between a few hun-
dred metres and a few kilometres.

(b) Turnover rate calculations

Annual mortality and recruitment rates were separately esti-
mated using standard procedures that use logarithmic models
which assume a constant probability of mortality and recruit-
ment through each inventory period (Swaine ez al. 1987; Phillips
et al. 1994). To reduce noise, turnover rates for each period were
represented by the mean of recruitment and mortality (91 sites),
or as mortality rates alone when recruitment data were not avail-
able (four sites) (table 1).

(¢) Analytical approach

Change in a rate process can be evaluated in many ways,
depending on the exact hypothesis being tested and the quality
of the data (Phillips 1996). Some sites have only one measure-
ment interval, whereas others have turnover rates reported for
multiple intervals. To use the greatest information content poss-
ible, we have used several different approaches here and in a
companion paper (Lewis et al. 2004a).

The core approach used in this paper involves calculating
mortality and recruitment rates for each site for each year in
which it was monitored, and plotting these rates as a function of
calendar year. (In the companion paper we focus on evaluating
changes within plots.) We test for change by comparing meas-
ured rates in the last year in which at least 10 sites were moni-
tored with rates in the first year in which at least 10 sites were
monitored. With our current dataset this typically allows com-
parisons across two decades from the early 1980s to 2001.

The method described here has the advantages of using all
the available turnover data and of being able to show graphically
the statistical range of site values within each calendar year and
across all calendar years. However, a concern is that the results
may be skewed by using short or varying census intervals
through time as it is not possible to coordinate censuses at the
Amazonian scale, nor is it even possible to select censuses retro-
spectively so that they are simultaneous and equally frequent at
all sites. We take a pragmatic approach to minimize the impact
of this concern. Thus, all rates are calculated for each site over
intervals of as close to 5 years as practical, so that short intervals
are collapsed together where possible (see electronic Appendix
A). Adjacent intervals less than 5 years are combined when the
difference between the combined period and 5 years is less than
the summed difference between each of the constituent intervals
and 5 years. To account for any residual census interval effect, we
also present key results with and without an empirical correction
for the census interval effect derived from 10 long-term sites from
Latin America, Africa, Asia and Australia (Lewis et al. 2004c).

We also needed to identify those plots potentially affected by
a ‘majestic forest’ bias, as a gradual or sudden breakdown of
mature phase forest will lead to locally accelerated dynamics.
We can rule out the possibility that a majestic forest effect could
be artificially accelerating dynamics in most plots, based on
either the sample unit shape and size, or the site selection pro-
cedures used, or the fact that the stand has gained basal area
through the monitoring period as their rate processes are
unlikely to be driven by locally accelerated dynamics resulting
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from death of large trees (table 2). The remaining seven plots
potentially most susceptible to majestic forest bias were
excluded from these analyses. Out of these, four (BDF-04,
BDF-08, CRP-01 and JAS-02) have more than one interval, and
the impact of leaving these forests out is evaluated in the results.

A further concern with our analytical approach is that a calen-
dar year signal confounds within-site change with among-site
change, so aggregated results could be influenced by biases that
could arise through unequal sampling of forest types across time
(‘site-switching’). Therefore we also present results in a way that
eliminates site-switching, to show only the aggregate of within-
site changes. This is achieved by ‘stretching’ all multi-interval
data backwards and forwards. We do this by applying the rate
actually recorded in the first interval rate for each year before
the first census back to 1976 (for each site initiated after 1976),
and applying the rate actually recorded in the last interval for-
wards to 2001 (for each site last censused before 2001). This
should be a conservative procedure with respect to the null
hypothesis because we are assuming no change in rates for all
years in which a site was not monitored. Most plots have been
monitored for less than 25 years and so stretching always flattens
the average gradient of any trend in rates. The main analyses—
correcting for site-switching, census-interval and majestic-forest
effects—are shown graphically and in table 3. Results using the
raw uncorrected data are shown principally in tabular form. To
explore the sensitivity of the main results to the exclusion of the
four potential majestic forest sites, a supplementary set of
census-interval and site-switching corrected analyses was run
using these data, and results compared with the main analyses
that corrected for all possible effects.

To be able to test whether patterns are widespread or simply
driven by change in one region or another, we arbitrarily divided
Amazonia into two roughly equal areas with as equal sample
sizes as possible: western and southern Amazonia, which we call
‘west and south’, and eastern and central Amazonia, which we
call ‘east and central’ (figure 1). Most east and central Amazon
forests are on the actively weathering Guyanan or Brazilian
shield or associated Cretaceous and Tertiary planation surfaces,
whereas most west and south Amazon forests are located on
Quaternary or Holocene Andean sediment (Irion 1978;
Sombroek 1984; Richter & Babbar 1991; but see also Lips &
Duivenvoorden 1996). Our geographical division is also consist-
ent with what we know about the floristic make-up of Amazon
forests, lying roughly perpendicular to the main southwest—
northeast gradient in composition (Terborgh & Andresen 1998).
In separate disaggregations we divided Amazonia in a climatic
sense (‘aseasonal’ versus ‘seasonal’, using the criterion of one
month or more receiving less than 100 mm rain to define
seasonality), and in an edaphic sense (poor soil versus richer
soils, with oxisols, oligotrophic histosols, and spodosols and
other white sands defined as ‘poor’, and alfisols, eutrophic histo-
sols, ultisols, clay-rich entisols, and alluvial and basaltic
inceptisols defined as ‘richer’). Climate data come from local
meteorological stations where possible, and otherwise from a
twentieth century climatology developed to characterize baseline
climates for the International Panel on Climate Change (see
http://ipcc-ddc.cru.uea.ac.uk). Soil classifications come from
published profiles where possible, and otherwise are based on our
own preliminary analyses (C. A. Quesada, C. I. Czimczik and J.
Lloyd, unpublished data). These categories represent an advance
on previous approaches that lumped the neotropics into a single
category (e.g. Phillips 1996) and allow us to maintain reasonable
sample sizes in each through the late twentieth century.
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Figure 1. Map of location of sites in Amazonia and contiguous forested zones. The map shows the approximate boundary
between the region where precipitation averages less than one month a year with less than 100 mm (‘aseasonal’, inside the
line) from the rest of Amazonia (‘seasonal’, outside the line). Sites with poor soils (oxisols, spodosols and oligotrophic
histosols) are represented by small stars, sites with richer soils are represented by large stars.

For data that were not corrected for site-switching we used
simple two-sample Student’s ¢-tests or the non-parametric equi-
valent (Mann—Whitney U-test), comparing values recorded at all
sites monitored at the start of the period (e.g. 1976) with values
at all sites monitored at the end of the period (2001). For data
corrected for site-switching we used paired Student’s z-tests or
the non-parametric equivalent (Wilcoxon tests), evaluating
change across all sites monitored for at least two intervals by
comparing the final interval rate with the first interval rate for
the same site. These statistical tests supplement graphical dis-
play of time-dependent patterns for each major pan-Amazon
and regional analysis. Exploratory comparisons of annual mean
mortality and recruitment rates are also used to indicate poten-
tial regional-scale lags between the ecological processes. The
focus here is on detecting broad spatial and temporal patterns,
rather than determining causes: the data are not yet of sufficient
quality to disaggregate the potential environmental and spatial
drivers of turnover processes or to pinpoint annual fluctuations,
but they are sufficient to test whether change is confined to spe-
cific Amazonian environments or if it is a general phenomenon,
and whether process rates are changing at different rates.

3. RESULTS

Ninety-seven sites met our criteria for inclusion, of
which 61 with at least two intervals are the main focus of
analyses (table 1; electronic Appendix A). Sites are distrib-
uted across the region, but with clusters in seasonal
eastern Amazonia with oxisols, in seasonal southwest
Amazonia with mostly richer soils, and in aseasonal
northwest Amazonia with mostly richer soils (figure 1). In
total the data represent 1640 hectare years of monitoring
by more than 20 research groups.

Across all 97 sites the distribution of recruitment and
mortality rates is skewed slightly positively, especially for
recruitment (figure 2). Both average ca. 2% per year (table
2), but recruitment rates are marginally greater than mor-
tality rates, using only sites with both mortality and
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recruitment values (Wilcoxon signed-rank test, Z= 2359,
p < 0.05, n=93, for both uncorrected and census-interval
corrected values).

When results are plotted from individual sites, turnover
rates vary substantially from site-to-site and interval-to-
interval (figure 3), suggesting that large samples of sites
may be needed to statistically distinguish large-scale pat-
terns in time and space. However, despite the inherent
noise in recruitment and mortality processes, taken
together these data show that turnover rates have
increased substantially across all Amazonian sites regard-
less of the method of data treatment (figure 4; table 3).
Each correction produces different patterns in terms of
magnitude of overall change and inter-annual fluctuations.
Nevertheless, irrespective of whether the procedures are
applied singly or in combination, the overall result of turn-
over increase remains highly significant (p < 0.001).
Thus, correcting for census interval effects causes all rates
to be shifted upwards (figure 454), but otherwise this has
no impact on the overall pattern shown in the raw data
(figure 4a) because there is no trend in the distribution of
census interval lengths through time (figure 5). Removing
the possible majestic forest sites slightly shortens the per-
iod available for comparison and appears to dampen the
fluctuations (figure 4c¢), but otherwise has no impact com-
pared with the raw data. As expected, eliminating site-
switching greatly reduces the supra-annual fluctuations
(figure 4d). It also simultaneously reduces the apparent
rate of change and the variance within any given year, so
that the net effect is that significance levels are not
substantially altered. We assumed zero change when we
stretched the turnover data from each site to eliminate
site-switching, so the aggregate graph is likely to under-
estimate the actual rate of any secular change across
Amazonian forests during the period. This is especially so
towards the start and end of the period when most plots
were not being monitored (figure 6), thus flattening the
trendline. Finally, when we correct for all three potential
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Figure 2. Frequency distribution of turnover rates across all
Amazonian sites for their full monitoring period. The
histograms include one value for each plot, calculated as the
whole-period rate parameter for that plot. See text for details.
Shaded bars, recruitment; black bars, mortality. (a) Uncorrected
for census interval, (b) corrected for census interval.

effects (figure 4e), the result is remarkably similar to cor-
recting for site-switching only, except that the line is
shifted upwards. Therefore most of the variability in the
raw data is caused by site-switching rather than any
other effect.

The remaining results—broken down by process, spatial
region and environmental attributes—are given after cor-
recting for all three potential artefacts.

Both recruitment and mortality have increased across
all sites (figure 7), with mean recruitment rates exceeding
mean mortality rates throughout the period. This differ-
ence is not significant initially but becomes so by the end
of the period (paired z-test for all 55 multi-census sites:
for first interval rates, t=1.51, p < 0.15; for final interval
rates, t=2.90, p < 0.01). Elsewhere (Lewis er al. 2004a)
we use within-plot analyses to show that a logical corollary
of this—increased stem density—is also apparent.

Turnover is nearly twice as high in the west and south
as it is in east and central Amazonia (median values 2.60,
1.35% yr~!, respectively; 95% CIs for difference 0.93 to
1.56% yr !, two sample rtest, r=7.94, p<0.001,
d.f. = 43; test includes all census-corrected sites monitored
in 1995 except those with potential majestic forest effects).
Turnover rates have increased significantly in both regions
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(figure 8; table 3). The absolute rate of change is greater
in the west and south (figure 8; Mann—Whitney U-test,
W=657, p<0.03, n=55; test compares regions using
census-corrected end versus start turnover rate increases
standardized by inventory length). In the west and south,
mortality and recruitment have both increased signifi-
cantly (figure 9a); in east and central Amazonia mortality
and recruitment trends are positive but only significantly
so for recruitment (figure 95).

The east—west differences and the within-region trends
in turnover, recruitment and mortality are largely mirrored
by the patterns among and within the soil-based categories
(figures 10 and 11). This is because poor soils tend to
dominate in the east and central forests and richer soils
are more common in the west and south (Irion 1978).
Thus richer soil forests are nearly twice as dynamic as poor
soil forests (median turnover rates 2.72, 1.37% yr !,
respectively; 95% Cls for difference 1.06 to 1.65% yr™!,
two sample r-test, r=9.23, p<0.001, d.f.=39; test
includes all census-corrected sites monitored in 1995
except those with potential majestic forest effects).
Recruitment and mortality have tended to increase on
both substrates but with the largest absolute increases on
richer soils and in recruitment rates (table 3).

Only the northwestern quadrant of Amazonia is gener-
ally aseasonal, and accordingly our aseasonal dataset is
both smaller and less extensive through time than the sea-
sonal one. Aseasonal Amazon forests are more dynamic
than seasonal Amazon forests but not significantly so
(mean turnover rates 2.64, 2.12% yr~!, respectively; 95%
CIs for difference —0.06 to 1.09% yr™!, two sample z-test,
t=1.88, p < 0.08, d.f.=18; test includes all census-cor-
rected sites monitored in 1995 except those with potential
majestic forest effects). Regardless, forests in both climate
regimes have become significantly more dynamic (figure
12; table 3). In both the seasonal and aseasonal Amazon,
both recruitment and mortality have increased signifi-
cantly (figure 13a,b).

We have redrawn the mortality and recruitment figures
by calculating the mean differences between the processes
when each curve is shifted to the left or right by x years
while holding the other constant (figure 14). The point at
which the difference curve intersects the year axis (mean
difference zero) indicates the mean lag in the system. This
provides a graphical display of the temporal relation
between the two curves, with the proviso that the multi-
annual census intervals will tend to smooth these relations.
At the pan-Amazon scale, mean mortality rates lag mean
recruitment rates by a period of ca. 15 years (figure 14a).
Both recruitment and mortality have increased in the
south and west but with a pronounced asynchronicity:
mortality lags recruitment by nearly 10 years (figure 145).
Mortality rates also lag recruitment rates in the east and
central Amazon (figure 14c), but the lag appears to be
longer and the effect is weaker and less coherent than in
the south and west.

Out of the four potential majestic forest sites, only one
(BDF-04) had a detectable effect on temporal patterns of
dynamics when compared with the main analyses that cor-
rect for all possible effects. This 1ha terra firme plot
experienced semi-catastrophic mortality caused by
unusual flooding (20% of stems died over a 4 year period),
followed by a big recruitment pulse. Including this site
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tree turnover (percentage per year)
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Figure 3. Interval-by-interval turnover rates for all sites in table 1, not corrected for census interval. In each year in which a
plot was censused, we estimated its turnover rate as the mean of the rates recorded in the interval that ended and the interval
that started in that year. Thick black line, mean; thick red line, median.

(and BDF-08) in the east and central Amazon analyses
did not alter the conclusion that recruitment rates have
increased here and that mortality rates have not, nor that
the dominant regional pattern is for mortality to lag
recruitment at supra-decadal scales (figure 14d, cf. figure
14¢). Finally, the spatial distribution of plots is clearly
non-random, and this could impact our results (if, for
example, plots happened to be located by chance in areas
with accelerating and synchronized dynamics as a result
of landscape-scale processes). Although a full analysis of
spatial autocorrelation is beyond the scope of this paper,
in the companion paper (Lewis er al. 2004a) we have
assessed its likely impact by selecting larger and larger
clusters of plots as the basic unit and asking whether the
mean values of the change parameters vary. Parameter
estimates are insensitive to the degree of aggregation of
sample units, indicating, for example, that the large con-
centration of plots north of Manaus in central Amazonia
is not disproportionately influencing change parameters,
and that our assumption that plot dynamics are largely
independent from one another is a reasonable one.

4. DISCUSSION

The results show that the mature forests of Amazonia
have experienced accelerated tree turnover during the past
one to three decades. This finding is consistent with earlier
findings at different time-scales and over larger spatial
extents: tropical forest plots were on average twice as
dynamic in the 1990s as in the 1950s, and increases have
occurred in both the Old and New World tropics
(Phillips & Gentry 1994; Phillips 1996). The current
analysis also expands upon these earlier findings in several
important ways.

First, the consistent patterns observed here suggest that
the previously reported increase in tropical tree turnover
rates (Phillips & Gentry 1994; Phillips 1996) cannot be
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substantially driven by any of the most debated artefactual
concerns. These are the tendency for turnover rates to
appear greater when measured over shorter interval cen-
suses (Phillips 1995; Sheil 1995a; Sheil & May 1996;
Lewis ez al. 2004c¢), the possible preference of some ecol-
ogists to select high-biomass ‘majestic’ forest that sub-
sequently develops gaps and accelerated mortality and
recruitment through endogenous sylvigenetic processes
(Condit 1997; Phillips & Sheil 1997; Phillips ez al. 1997,
2002a), and progressive ‘switching’ of monitoring effort
through time to intrinsically more dynamic forests
(Condit 1997).

Second, the increasing turnover result sheds light on the
increasing biomass result (Phillips er al. 1998b; Baker et
al. 2004b), and vice versa. Thus, the net increase in
biomass in Amazon plots is unlikely to reflect widespread
natural recovery from earlier catastrophic disturbance,
because succession should involve reduced recruitment
rates of small trees as maturing forests thin. Conversely,
progressive fragmentation and advancing edge effects—
changes that accelerate turnover by Kkilling large trees
(Laurance et al. 2000; Laurance 2004)—cannot be
responsible for the turnover increases in our data because
most plots with increasing turnover are also gaining
biomass (Lewis er al. 2004a). In summary, the coinci-
dence of increasing turnover with increasing biomass
makes it difficult to explain either as an artefact of sam-
pling bias or landscape processes.

Third, we have demonstrated that the increase in turn-
over is not simply an outcome of an increase in mortality
or an increase in recruitment. For the Amazon, at least,
it is both. Forest dynamic processes have therefore accel-
erated in a concerted manner.

Fourth, we have found that, regardless of time-related
trends, turnover rates of tropical forest trees also vary sys-
tematically with environmental and/or regional factors.
Turnover rates are highest on richer soils, in aseasonal
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differences will be difficult because the design of the
Amazon ‘experiment’ is not balanced: most richer soils,
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for example, are located in areas relatively immune to
ENSO inter-annual climate fluctuations. Still, the results
here move us closer to tackling the exciting and critical
questions of what factors drive tree dynamics in tropical
forests in general, and what factors are driving the ecologi-
cal changes in particular. The spatial patterns in forest
dynamics might imply a macroecological response to
prevailing climate and soil conditions, such that ample
moisture supply and good soil nutrition support greater
above-ground forest productivity in the west and the
south, which in turn supports faster turnover rates
(Phillips et al. 1994). Wood density is lower in the west
and south (Baker ez al. 2004a), but even after correcting
for wood density the ‘slow’ forests of central Amazonia
have lower above-ground wood production than the ‘fast’
forests of the west and south (Malhi ez al. 2004). This is
consistent with the finding from a broad sample of tropical
trees that wood density does not influence rates of biomass
production across trees (Enquist er al. 1999). Non-
resource factors, such as windstorms (Nelson ez al. 1994),
saturated soil conditions and topography (Gale & Barford
1999) may also contribute to higher turnover rates in the
west. Biogeographic factors may also play a role. Several
families dominant on the richer soils in the southwest (e.g.
Cecropiaceae, Mimosaceae, Malvaceae) have typically low
wood densities and high mortality rates. By contrast,
families with Guyanan shield centres of diversity (e.g. Caes-
alpinaceae, Lecythidaceae, Chrysobalanaceae) exhibit more
‘stress-tolerant’ growth strategies with high wood density,
large seeds and seedling banks in shaded and nutrient-poor
environments (ter Steege & Hammond 2001; Baker ez al.
2004a). At the community level, there is a clear northeast—
southwest Amazon floristic gradient in familial dominance
(Terborgh & Andresen 1998; ter Steege er al. 2000). So
one important question is whether it is resource availability
driving these biogeographic patterns or whether the histori-
cal pattern of evolution has driven the ecological differ-
ences? Whereas relative densities of species vary along the
spatial gradient, no significant tree family and very few
genera appear to be actually restricted to either Guyana or
to the southwest, indicating that there have been no signifi-
cant long-term barriers to migration. This suggests that the
edaphic resource gradient is likely to be the cause of the
floristic gradient, perhaps mediated through the effects of
soil quality on tree turnover rates favouring some phylo-
genetically conserved growth and regeneration strategies
over others.

(a) Mechanisms of forest dynamics

The data we have assembled can also provide some
insight into the mechanisms of forest dynamics in the
Amazon. Tree turnover is an emergent property of under-
lying forest structural, floristic and dynamic processes.
Considered at its most simple we can envision two
extreme situations: (i) a system driven entirely by cata-
strophic mortality, in which exogenous disturbance events
such as fire, drought, flood and storm determine forest
structure and dynamics (cf. Connell 1978); or (ii) a sys-
tem driven entirely by endogenous growth and recruit-
ment processes, in which resource supply provides the
ultimate driver for forest ecology so that trees mostly die
competing for these resources (cf. Enquist & Niklas
2001). Which of these models best approximates reality
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in the Amazon? We know of course that both processes
operate—weather extremes Kkill trees but competition for
resources can be intense—but it should be possible to test
which mode is dominant at the regional scale. One
approach would be to examine tree-by-tree mortality
records to determine spatial patterns in proximate causes
of death (e.g. Korning & Balslev 1994), but we do not yet
have the data to attempt this across the Amazon. Another
approach is to assess temporal lags between mortality and
recruitment within plots and within regions. More specifi-
cally then, a further question that can be asked is whether
catastrophic disturbances occur frequently enough and
synchronously enough to generate large-scale lags of
recruitment following mortality? Or, are they so rare and
random that instead pulses of recruitment lead pulses of
mortality? The results from the pan-Amazon and regional
subsets show that mean mortality rates lag mean recruit-
ment rates (figure 14a,b,c), implying that recruitment is
leading turnover and therefore possibly driving the
increase in turnover too. Including potential majestic
forest sites in the analysis shows that in some patches
recruitment pulses certainly follow extreme mortality
events (figure 14d), but does not alter the current domi-
nant regional pattern of mortality lagging recruitment.

We need to consider an alternative explanation for this
pattern. Imagine that a catastrophic mortality event sets
synchronized recruitment of a cohort of light-demanding
trees, then there will be high mortality rates of small trees
in the developing stand, followed by deaths of the few big
dominant trees, leading to another pulse in recruits, and
then high mortality rates by self-thinning, and so on (Sheil
2003). Assuming that this wave-like pattern of forest
ontogeny dominates in Amazonia, and that our plots tend
to start around the point that a few big trees are dying
and finish around the point that self-thinning mortality is
accelerating, then the pattern of recruitment leading mor-
tality during the particular time-window glimpsed by the
plots could actually reflect a longer-term mortality-led
process initiated originally by a much earlier large-scale
climate event across the Amazon. This ontogenetic argu-
ment generates several testable predictions. The key pro-
cess is death of a few big trees near the start of the time-
window. Therefore, we should also find: (i) declines in the
relative importance of long-lived pioneer taxa; (ii) net
losses in the number of big trees; (iii) szem mortality rates
increasing, but biomass mortality rates dropping from an
early peak; and (iv) stand biomass dropping steeply early
in the monitoring period, then slowly recovering. We have
not yet collated all the life-history data needed to carry
out the floristic test proposed (i), but results of the other
tests are not consistent with this model: the number of big
trees has not decreased on average (ii) (cf. Phillips ez al.
1997, fig. 1; Phillips ez al. 20024, p. 582); biomass mor-
tality rates tend to increase during the monitoring period
(iii) (cf. Lewis et al. 2004a, fig. 4); and rates of net change
in biomass are independent of time elapsed since the plot
was established (iv) (cf. Phillips ez al. 2002a, fig. 2).

So, we argue that the ghosts of deaths past cannot easily
explain the general syndrome of concerted dynamic and
structural change in old-growth Amazon forests. Notwith-
standing this, mortality-led dynamics certainly do occur in
the Amazon, and all individual stands must still be adjusting
in subtle ways to past disturbances. How frequent are



402 O. L. Phillips and others

Patterns and process in Amaszon tree turnover

>
o

l.eo-0-®0-0-0-0 °
r.,—.—u-'f.-.——o—u—‘

annual rate of stem mortality
or recruitment (%)
N
(e

,"m,' 8 -0-0-0-01
154 448028888800 et000e?
1.0 ‘ ‘ : ‘
1976 1981 1986 1991 1996 2001
year

Figure 7. Recruitment and mortality, Amazonia 1976-2001.
Both recruitment and mortality rates have increased.
Corrected for census-interval, site-switching and majestic
forest effects. Solid green line, recruitment mean; green dots,
recruitment 95% CI; solid red line, mortality mean; red
dots, mortality 95% CI.
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Figure 8. Trends in turnover in west and south Amazonia
and east and central Amazonia. Turnover has increased
significantly in both regions, but is much higher in the south
and west than in the east and central Amazon throughout
the period. Corrected for census-interval, site-switching and
majestic forest effects. Orange line, east and central mean;
orange dots, east and central 95% CI; blue line, west mean;
blue dots, west 95% CI.

catastrophic disturbances? In principle, long-term monitor-
ing of plots should provide better estimates of their fre-
quency and impact than anecdotal reports of individual
events. In some of our central Amazon plots increased rain-
fall and wind storms associated with La Nina brought
increased risk of death by flooding (BDF-04) and
windthrow (JAC-01, JAC-02: N. Higuchi, personal
observation). Likewise, in the Manu region of southwestern
Amazonia, occasional extreme storm events can topple
emergent trees over large areas (Foster & Terborgh 1998).
But in 1640 hectare years of monitoring, we have yet to
observe really catastrophic disturbance in any of our plots.
Although space and time are not perfectly substitutable,
this implies that such events have been very rare, asynchro-
nous, and localized for at least the past 20 years. Further
analysis at finer scales and over longer time periods is
clearly needed to develop rigorous tests of the ‘catastrophic’
versus ‘resource supply’ models of forest dynamics.
However, late twentieth-century Amazonia is perhaps
not an ideal setting for testing equilibrium or stochastic
models of forest behaviour, because the whole system is
undergoing a shift as turnover rates accelerate and forest
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Figure 9. (@) Recruitment and mortality, west and south
Amazonia. Both recruitment and mortality rates have
increased. (b) Recruitment and mortality, east and central
Amazonia. Only recruitment rates have increased
significantly. Corrected for census-interval, site-switching and
majestic forest effects. Note the different scales. Solid green
line, recruitment mean; green dots, recruitment 95% CI;
solid red line, mortality mean; red dots, mortality 95% CI.
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Figure 10. Turnover through time in poor soil (spodosol,
oxisol, histosol) compared with richer soil (ultisol, inceptisol,
entisol, eutrophic histosol) Amazonia. Corrected for census-
interval, site-switching and majestic forest effects. Blue line,
rich soil mean; blue dots, rich soil 95% CI; orange line,
poor soil mean; orange dots, poor soil 95% CI.

basal area increases. The shift is apparently both ubiqui-
tous but also asymmetric: turnover rates have risen most
in absolute terms in the already-dynamic forests of the
south and west, and is being led by recruitment changes,
with recruitment exceeding mortality in most forest zones
for most of the time. Seedlings and saplings are not being
monitored in most of our plots so we cannot tell if the
recruitment gains result from increased growth of
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Figure 12. Turnover through time, aseasonal versus seasonal
Amazonia. Corrected for census-interval, site-switching and
majestic forest effects. Blue line, aseasonal Amazonia mean;
blue dots, aseasonal 95% CI; orange line, seasonal Amazonia
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seedlings and saplings or lower mortality rates, but the
latter is unlikely as mortality rates have generally increased
for trees 10 cm or more in diameter. The fact that growth
and mortality rates are higher on more productive soils
(this paper; Phillips er al. 1994; Malhi er al. 2004) indi-
cates that spatial variation in growth rates is primarily
caused by factors that influence growth of plants, and
therefore that temporal variation may be too. The patterns
of Amazon change in dynamics and stand structure also
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Figure 13. (@) Recruitment and mortality through time,
seasonal Amazonia. (b) Recruitment and mortality through
time, aseasonal Amazonia. Corrected for census-interval,
site-switching and majestic forest effects. Note the different
scales. Solid green line, recruitment mean; green dots,
recruitment 95% CI; solid red line, mortality mean; red
dots, mortality 95% CI.

conform to common-sense predictions for a growth driver
(Lewis et al. 2004a,b). Here, growth rates across all size-
classes and therefore recruitment rates into the 10 cm size-
class respond instantaneously to an increase in resource
provision, with adult mortality lagging as the system
approaches, perhaps, a new equilibrium at higher biomass
and turnover (Lloyd & Farquhar 1996; Chambers ez al.
2001). Given an equal proportional effect in all forests,
the absolute effect should be greater in faster forests and
therefore the signal easier to detect (given a similar magni-
tude of ‘noise’ across forests), which is what we observe
(cf. for example western versus eastern Amazon
significance levels for the final-interval versus first-interval
change in recruitment and mortality rates; table 3).
Similarly, faster systems should respond to a stimulating
effect in a more synchronized manner than slower sys-
tems. Mortality and recruitment curves do appear to be
more closely synchronized with one another in the faster
forests. Southern and western Amazonia have a fast
response of mortality to recruitment, and mean rates
match each other for only a narrow envelope of lag periods
(figure 14b). In eastern and central Amazonia there is a
slow response of mortality to recruitment, and mean rates
are quite well matched for a wide range of lag periods
(figure 14¢,d). Although the lag analyses involve too many
assumptions to attach statistical confidence, the patterns
are in line with common sense predictions. To the extent
that the processes are causatively linked we can use these
patterns to predict stem mortality patterns into the future.
The results imply that stem mortality rates must eventually
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Figure 14. The temporal relationship between mean mortality and recruitment rates across all sites, after correcting for site-
switching and census-interval effects and (except (d)) for majestic forest effects. Positive values for the y-intercept indicate
recruitment leading mortality. See text for details. (@) Pan-Amazon, mortality lags recruitment by 15 years; (b) south and west
Amazonia, mortality strongly lags recruitment by 7-9 years; (¢) east and central Amazonia, mortality weakly lags recruitment
by at least 10 years; and (d) east and central Amazonia, mortality still lags recruitment weakly (including the potentially

majestic forest sites BDF-04 and BDF-08).

increase in the east as the swollen cohort resulting from
the recent (and future?) pulse of elevated recruitment
works its way through the system.

(b) Causes of changes in forest dynamics

What might the environmental parameter(s) driving
these changes be? We have two sets of circumstantial evi-
dence to guide us. First, a priori knowledge of changes in
drivers and their likely ecophysiological effects (Lewis er
al. 2004b; Malhi & Wright 2004) allows us to estimate the
potential impact of any given process. Second, the geo-
graphical and temporal pattern of response provides
further clues. Change has occurred over large areas
(different regions of Amazonia and beyond) for at least
two decades, even though detecting trends in individual
sites is notoriously difficult because of a high ratio of noise
to signal (Phillips 1996; Hall er al. 1998). Therefore the
driver must be either a set of coincident yet independent
local changes at dozens of sites, or more parsimoniously
a single ‘global’ environmental change. Combining both
strands of evidence suggests we should probably reject
most aspects of climate change as the dominant driver.
Amazon moisture regimes have not changed significantly,
and although Amazonia is shown to have warmed by ca.
0.26 £ 0.07 °C per decade since 1976 (Malhi & Wright
2004), the impacts of a modest warming on tropical
growth (increase or decrease) are not certain (Lewis er al.
2004b), bearing in mind that tropical warming needs to
boost growth to be a candidate. ENSO cycles certainly
affect mortality and recruitment rates in some forests, but
it is difficult to see how they can be driving increased
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turnover on continental and multi-decadal time-scales.
The immediate impact of meteorological extremes on for-
est dynamics is typically by short-term reductions in
growth and increases in mortality (e.g. the La Nina flood-
ing in BDF-04), whereas in fact mortality gains are lagging
recruitment gains. Also, ENSO events only marginally
affect south and west Amazon, but turnover gains have
occurred there. Climate cycles with longer periodicity also
affect the Amazon, such as a 24-28 year cycle (Botta er
al. 2002) and supra-millennial cycles with orbital forcing
(Mayle ez al. 2000). Some role for these cannot be ruled
out, but the magnitude and sign of the changes in moist-
ure and temperature regimes that they engender vary
across the region. We lack a plausible mechanistic
explanation of how these changes can cause forests across
the region to respond simultaneously with increased stem
recruitment (this paper), increased stem density (Lewis ez
al. 2004a), increased rates of basal area growth and mor-
tality (Lewis et al. 2004a), net gains in biomass (Baker
et al. 2004b) and increased relative dominance of lianas
(Phillips ez al. 2002b). Some other candidate growth driv-
ers (deposition of nitrogen and other nutrients through
biomass burning, increased Saharan dust deposition) are
too poorly characterized, ecophysiologically uncertain and
probably too spatially localized to be able to make a coher-
ent case, although again contributory effects cannot be
ruled out. By elimination, two growth drivers remain as
serious candidates. We discuss them in turn.

First, the only large-scale growth driver known to have
increased across the tropics is atmospheric CO,, and elev-
ated concentrations of CO, may plausibly be stimulating
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forest growth through increased canopy photosynthetic
rates. However, the annual increase in turnover in Ama-
zon plots is ca. 2.8 +1.7% (from table 3: calculated for
the period 1987-1997 with pan-Amazon turnover rates
corrected for potential artefacts). This is an order of mag-
nitude greater than would be predicted on the basis of
1:1 scaling of growth effects recorded in pot, growth
chamber or small-scale free air carbon dioxide enrichment
(FACE) experiments (Curtis & Wang 1998). But what
scaling should we expect? This is a controversial area (see
Chambers & Silver (2004) and Koérner (2004) for different
interpretations), but we suggest that there are several
reasons for suspecting that a 1:1 scaling to real-life
growth rates (Lewis ez al. 2004a) and recruitment rates
(this paper) in tropical forests may be unduly conservative.
First, growth stimulation for tropical trees i situ in
response to increasing CO, concentrations may be parti-
cularly large owing to a strong sensitivity of photosynthesis
to intercellular CO, concentrations at the high and
increasing leaf temperatures experienced in this biome
(Long 1991; Lloyd ez al. 1995; Grace et al. 1996). Second,
CO, fertilization experiments involve shocking simple
communities with a sudden increase in CO,, whereas in
reality complex forests have experienced a slow increase
during which compositional and allocational shifts may
occur to optimize the use of the increasing resource.
Third, such experiments expose plants to ambient CO,
concentrations about twice those ever experienced in the
past 20—60 Myr of evolutionary history, whereas in reality
forests have experienced an increase from low concen-
trations at which CO, is more limiting. A fourth factor is
the likelihood that tropical trees expend a dispro-
portionately large proportion of their assimilated carbon
on autotrophic respiration rather than growth (Lloyd &
Farquhar 1996; Chambers et al. 2004). The argument
here is that, especially as the tropical forest canopy may
be already closed with any increases in leaf area of little
consequence, much of this extra carbon being acquired as
atmospheric CO, concentrations increase may be being
channelled into new stem growth. As new stem growth
typically constitutes a relatively small proportion of the
overall annual net primary production (Malhi ez al. 2004),
the proportional increase in stem growth rates in response
to increasing CO, concentrations may be much greater
than the proportional increase in photosynthesis itself
(Lloyd & Farquhar 1996). Fifth, although some workers
have assumed that nutrient limitations (especially
phosphorus) should constrain tropical forest growth
responses to increasing CO, concentrations (e.g.
Friedlingstein er al. 1995) there is little evidence to show
that this should be the case (Lloyd er al. 2001). Sixth,
photosynthetic and growth responses to CO, of young
tropical plants may be particularly large close to the light
compensation point (Wirth er al. 1998; Granados &
Korner 2002), so proportional impacts in the understorey
may be substantial.

The above theoretical considerations suggest that a por-
tion of the increase in tropical forest recruitment rates
occurring over the past 25 years that we document may
have a physiological explanation in increasing availability
of CO, However, even if we accept these arguments, they
are clearly not sufficient to explain the magnitude of
change witnessed. Similarly, the increasing dominance of

Phil. Trans. R. Soc. Lond. B (2004)

large lianas recently documented for western Amazonia
(Phillips et al. 2002b) appears too rapid to be generated
solely by first-order responses to gradual CO, enrichment
(but see also Granados & Korner 2002). Recent satellite-
based measurements suggest that a second key growth
driver, sunlight, may have been increasing in much of
Amazonia (Wielicki er al. 2002), and a modelling study
suggests that Amazon net primary productivity could be
responding to an increase in photosynthetically active
radiation (Nemani ez al. 2003).

The CO, and sunlight explanations are not mutually
exclusive (growth responses to CO, could improve syner-
gistically with increased radiation), but because the first is
universal and the second has a strong spatial pattern, we
can posit clearly distinct predictions that should allow us
to eventually discriminate their ecological footprints.
Thus: if a CO, effect is dominant we expect to see growth
and dynamics responses everywhere we look in the tropics
(except where constrained by large climate change); if a
radiation effect is dominant we expect to see growth and
dynamics responses approximately in proportion to simul-
taneous local radiation trends. To perform such tests will
require estimating growth rates and growth trends for per-
manent plots across the biome, building on the kind of
cumulative, collaborative and careful work by field biol-
ogists that has been synthesized here. An initial attempt
can be made using existing data, but we will need invest-
ment comparable to that being made in monitoring the
climate to be able to fully discriminate the contributions
of multi-decadal climate cycles from those of long-term
trends. Truly long-term commitments to on-the-ground
ecosystem monitoring are essential for understanding the
profound changes that forests will experience through the
twenty-first century.
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CI: confidence interval

ENSO: El Nifto—Southern Oscillation
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