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Abstract There are a number of controversies sur-
rounding both biomass estimation and carbon balance
in tropical forests. Here we use long-term (from 1978
through 2000) data from five 0.5-ha permanent sample
plots (PSPs) within a large tract of relatively undisturbed
Atlantic moist forest in southeastern Brazil to quantify
the biomass increment (DMI), and change in total stand
biomass (DMstand), from mortality, recruitment, and
growth data for trees ‡10 cm diameter at breast height
(DBH). Despite receiving an average of only 1,200 mm
annual precipitation, total forests biomass (334.5±
11.3 Mg ha�1) was comparable to moist tropical forests
with much greater precipitation. Over this relatively
long-term study, forest biomass experienced rapid de-
clines associated with El Niño events, followed by
gradual biomass accumulation. Over short time intervals
that overlook extreme events, these dynamics can be
misinterpreted as net biomass accumulation. However
for the 22 years of this study, there was a small reduc-
tion in forest biomass, averaging �1.2 Mg ha�1 year�1

(±3.1). Strong climatic disturbances can severely reduce
forest biomass, and if the frequency and intensity of
these events increases beyond historical averages, these
changing disturbance regimes have the capacity to sig-
nificantly reduce forest biomass, resulting in a net source
of carbon to the atmosphere.

Keywords Disturbance Æ Climate change Æ
ENSO Æ Drought Æ Tree mortality

Introduction

Tropical permanent sample plots (PSPs) have been
utilized to predict the impacts of environmental change
on vegetation-related processes. Some results from PSPs
indicate that mature neotropical forests are a net sink
for atmospheric carbon due to increasing forest biomass
(Phillips et al. 1998, 2002a, b; Baker et al. 2004; Lewis
et al 2004). Measurements over shorter time scales using
the eddy covariance method in tropical forests also
suggested a net carbon sink (Grace et al. 1995; Malhi
et al. 1998), but other PSP studies (Clark 2002; Chave
et al. 2003), and recent studies using eddy covariance in
conjunction with detailed field data (Saleska et al. 2003;
Chambers et al. 2004b) suggest that at least some neo-
tropical forests are probably best characterized as in a
state of dynamic equilibrium.

Tropical forests contain about 40% of the carbon
stored as terrestrial biomass (Dixon et al. 1994) and
represent a substantial fraction of the world’s forest
NPP (Melillo et al. 1993; Field et al. 1998). Field esti-
mates of net primary production (NPP) for tropical
ecosystems are important to assess carbon cycling rates
in the face of global changes, and to validate global-scale
ecosystem models (IPCC 2001). Field studies for esti-
mating forest NPP involves measurements of separated
below- and above-ground components, which include
the increments and losses of forest biomass throughout
the time period (Clark et al. 2001b). Above-ground
biomass increment or stand mass increment (DMI,
Chambers et al. 2001; Clark et al. 2001a, b), is an
important component of NPP, and is defined as the
change in mass of surviving trees in an inventory plot
over time. In a recent detailed review of available data
for estimating total NPP from 39 old-growth tropical
forest sites, Clark et al. (2001a) found that only 18 of the
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these sites had reliable information to accurately quan-
tify DMI, which varied from 0.3 to 3.8 Mg C ha�1 per
year.

Another important variable for calculating forest
carbon balance is the total change in tree stand mass
over time (DMstand), which is the sum of recruitment and
DMI, less mortality. Since tree mortality in tropical
forest is highly episodic in space and time, DMstand is
generally much more variable than DMI. In addition,
recent studies find that elevated tree mortality in par-
ticular years is strongly linked to changes in environ-
mental conditions. For example, a dramatic decline in
precipitation correlated with a strong El Niño event
resulted in much higher than average tree mortality rates
at sites distributed throughout the neo-tropics (Condit
et al. 1995, 1996; Laurance et al. 2001; Rolim et al. 1999,
2001).

Here we use long-term (from 1978 through 2000) data
from five 0.5-ha PSPs within a large tract of relatively
undisturbed Atlantic moist forest in southeastern of
Brazil to quantify DMI and DMstand from mortality,
recruitment, and growth data for trees ‡10 cm diameter

at breast height (DBH). To provide substantive infor-
mation on biomass dynamics from year to year, each
plot was recensused ten times at 1–5.5 year intervals
during the 22-year period (since 1983). Long-term PSP
data with numerous census over short time intervals is
quite rare for tropical forests (Clark et al. 1993), and
PSP data for Atlantic forest is particularly lacking. We
addressed specific hypotheses related to how both short-
term and long-term biomass dynamics parameters are
affected by differences in annual tree mortality, growth,
and recruitment as a consequence of extreme changes in
rainfall in particular years.

Materials and methods

Study site

This study was conducted at Vale do Rio Doce Reserve
(RVRD), which is located about 30 km north of the city
of Linhares, Espı́rito Santo state, Brazil (19�18¢ S and

Fig. 1 Location and map of
Linhares Natural Reserve,
Brazil. The plots in the map
indicate the blocks of
experimental study
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40�04¢ W), with an elevation of 28–65 m (Fig. 1). The
reserve is 21,787 ha in size and one of largest tracts of
intact Atlantic rain forest in Brazil. The adjoining matrix
is a mix of pasture, cultivated lands (papaya, coffee), and
timber plantations (Eucalyptus). The reserve was created
in the 1950s when the Brazilian company Companhia
Vale do Rio Doce (CVRD) planned to use timber from
the site to fabricate railroad ties for the Vitória-Minas
line. Forest management studies indicated that the plan
was not economically viable, and the forest site was
maintained as a reserve. Numerous long-term studies are
being carried out in RVRD in primary and secondary
forests, in plantations with arboreal species, and on seed
ecology.

The forest is semi-deciduous with about 30% of the
species (n=41) losing their leaves in the dry season
(Engel 2000). The five study plots are located on a large
plain with little topographic variability. The soil that
occurs on the PSPs is a nutrient-poor dystrophic red–
yellow podzol (Peixoto and Gentry 1990, site 13 in
Clinebell et al. 1995), which is the dominant soil type in
the Linhares reserve (Garay et al. 1995).

Systematic surveys have been undertaken in the Re-
serve during the past 25 years and the CVRD herbarium
at the reserve contains a collection of 10,000 specimens,
representing more than 2,100 vascular plant species.
Forest composition is similar to that of most neo-trop-
ical humid lowland forests, with accentuated species
richness in the families Leguminosae, Myrtaceae,
Annonaceae, Sapotaceae, Rubiaceae and Bignoniaceae
(Peixoto and Silva 1997; Peixoto et al. 2004; Rolim and
Chiarello 2004). Myrtaceae is the most species-rich
family if Leguminosae is considered as three distinct
families, and there is a predominance of climbers in the
Bignoniaceae (Peixoto and Gentry 1990).

Annual rainfall is quite low for a closed-canopy
tropical moist forest, averaging 1,200 mm (measured
from 1978 to 2000) with a pronounced dry season
(defined as less than 50 mm month�1) from May to

August and mean maximum and minimum average
temperatures of 25.2 and 19.1�C. In the study area, the
unusual strength of the 1987 and 1998 ENSO (El Niño
Southern Oscillation) events is best illustrated by
examining dry season rainfall (Fig. 2). During the dry
season in these ENSO years, rainfall (May–August) was
23.2 mm (1987) and 31.3 mm (1998), or less than one-
fifth of average precipitation. Moreover, in 1998 the
drought continued into September, when precipitation
was only 15 mm.

Plot description and census

A long-term experimental study of tree-community
dynamics, biomass, and composition has been con-
ducted in logged (since 1980) and unlogged forests (since
1978) in Vale do Rio Doce Reserve (Fig. 1). The
objective of the experiment is to compare the effect of
different partial cuttings on forest growth, yield, and
species diversity. The experiment was installed using a
completely randomized block design with nine treat-
ments and five blocks. For this study, data were pooled
from five 0.5-ha (100·50 m) permanent plots in un-
logged sites (control). Following the initial census of all
trees in 1978, each plot was recensused ten times (1983,
1986, 1989, 1992, 1993, 1994, 1995, 1997, and 1999) to
assess tree mortality, recruitment, and growth, with a
final census conducted in 2000. In each census, all trees
‡10 DBH were measured at 1.3 m height or above any
buttresses.

Tree mortality and recruitment

For each census interval, we calculated mean annual
rates of tree mortality as m=1�[(N0-Nm)/N0]

1/t, and
recruitment as r=[(N0+Nr)/N0]

1/t �1, where N0 is the
number of trees at the beginning of the interval, Nm and

Fig. 2 Dry season rainfall
(May–August) at the Linhares
Natural Reserve, Brazil, from
1975 to 2000. The severe
drought (ENSO events)
occurred in 1987 and 1998
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Nr are, respectively, the number of trees that died and
recruited during the interval, and t is the number of
years (Sheil and May 1996). To determine whether tree
sizes are equally susceptible to droughts, we placed the
distribution of trees dying in each census interval into
four size classes (10–19.9, 20–39.9, 40–59.9, ‡60 cm).

Above-ground biomass estimates and production

Since specific allometric equations for our study were
not available, DBH measures for each census and each
plot were converted to above-ground dry biomass
(AGB) estimates using an allometric equation given in
Chave et al. (2001) for moist tropical forest. For each
tree, AGB was calculated as: ln(AGB)=�2.19+2.54
(ln DBH), where AGB is measured in kg (dry biomass)
and DBH is in cm. Total biomass (AGBT) for each plot
and in each census was the sum of all individual live tree
biomass.

Census data from the five permanent plots were used to
estimate change in total standmass (DMstand = AGBt2�
AGBt1) and above-ground biomass increment
(DMI = AGBG + AGBR) as describe in Clark et al.
(2001b), where AGBt2 and AGBt1 are the above-ground
biomass of live trees at time 2 and time 1, respectively,
AGBG is the above-ground biomass increment of all
surviving tree between at the end and beginning of the
interval, and, AGBR is the biomass increment of recruit-
ment. The increment of each new tree (AGBR) is calcu-
lated as the difference between its estimated biomass at the
end of the interval and the biomass of a tree of the mini-
mummeasured diameter (in this case=10 cmDBH).We
also computed coarse wood debris (CWD), the biomass
of trees that died in the interval. For all variables, confi-
dence intervals (95% CI) were calculated as the
mean ± (t0.05) · mean standard error (Cochran 1977).

The variables CWD and AGBT were analyzed using
linear regression. Both minimum precipitation during
the previous year (from May to August) and time (1978–
2000) were used as independent variables. Although time
is not an explanatory variable, it allowed for a visual
interpretation of temporal tendencies in DMI. We
expected that the high CWD for the current year was
primarily caused by minimum precipitation during the
previous year(s), and that DMI will be higher after

drought, balancing preceding losses. The univariate
F-test was applied to CWD and DMI to verify imbal-
ances between census years and one-tailed paired t-tests
were performed to compare CWD production in pre-
ENSO and ENSO events (1983–1986 vs 1986–1989 and
1995–1997 vs 1997–1999). Biomass components with
variances between census that were not homogenous
according to the Hartley test (P<0.05), and that did not
exhibit a normal distribution (Shapiro-Wilks, P<0.05),
were transformed using a natural logarithm [ln(x+1)].

Results

Mortality and recruitment

Over the 22-year period, recruitment of new trees offset
the losses caused by tree mortality. However, tree mor-
tality was quite variable over the entire period, and
substantially increased following droughts (1989 and
1999, Table 1). The mean mortality rate for 22-year
period was 2.0% year�1, but it was 1.4% when only non-
ENSO intervals were used. On average, tree mortality
during the 1986–1989 and 1997–1999 periods was nearly
3–4 times greater than the mean rate of non-ENSO
intervals. Despite the variation in mortality among size
classes during 1986–1989 interval, all classes showed
increased mortality in both ENSO periods (Fig. 3).

Variation of aboveground biomass among plots
and census

Total above-ground biomass ranged broadly from 241.2
to 436.9 Mg ha�1 for all plots and census (n=5 plots
·11 censuses), averaging 334.5 Mg ha�1 (±11.3, 95%
CI) (Table 1). In the 1986/1989 (ENSO period) biomass
was reduced by 17.1%. Although less severe, the 1998
drought also caused a decline in forest biomass, with a
mean reduction of 8.2% of the total biomass. The high
variation among plots and census (Fig. 4) was mainly
due to the presence and absence of ‘‘giant’’ trees
(‡100 cm DBH). Plots 3 and 4 had the highest biomass
in the initial census, with three giant trees in plot 3 and
four giant trees in plot 4. These trees comprised more
than 9.3 and 15.8% of the total biomass in each plot,

Table 1 Above-ground biomass (AGBT), annualized mortality (m) and recruitment (r) rates, production of coarse wood debris (CWD),
above-ground biomass change (DMstand), and above-ground biomass increment (DMI) over the 22-year period at Vale do Rio Doce
Reserve

1978 1983 1986 1989 1992 1993 1994 1995 1997 1999 2000 Mean

AGBT 340.9 367.1 379.2 314.5 327.7 332.7 333.6 334.2 333.4 306.1 309.8 334.5
r – 0.8 1.2 2.3 2.3 2.4 2.4 1.3 1.1 1.7 5.1 2.1
m – 0.7 1.4 3.8 0.9 1.4 1.6 1.0 1.7 4.9 2.4 2.0
CWD – 2.1 3.5 27.5 2.5 1.9 3.7 2.6 2.7 17.4 5.5 6.9
DMstand – 4.8 4.0 �21.6 4.4 5.0 0.9 0.6 �0.4 �13.6 3.6 �1.2
DMI – 6.7 7.3 5.4 6.4 6.4 4.2 2.9 2.0 3.4 8.1 5.3
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respectively, in 1986. During the 1986–1989 interval
(after the 1987 drought), 42.7% of total CWD across all
2.5 ha occurred in plot 4, because three giant trees died
(92.6% of biomass death in plot 4), while 24.4% of total
CWD across all 2.5 ha occurred in plot 3, with a death
of one giant tree (34.8% of biomass death in plot 3). No
giant trees died during the 1997–1999 interval, which in
large part explains why the second ENSO event had less
impact on total forest biomass. In contrast, during the
years between droughts (1989 and 1997) AGBT

increased slightly (Fig. 4), but there was a significant
decrease in AGBT over the entire census period (F=9.5,
P<0.003, R2 =0.15).

Aboveground biomass change

As expected, post-drought CWD productions were
more than 2–4 times the average rate (6.9±3.0
Mg ha�1 year�1). As a consequence, annual CWD input
was highly variable among years (F=6.6, P<0.0001,
df=9), ranging from 2.1 to 27.5 Mg ha�1 year�1 (Ta-
ble 1). In fact, CWD production in periods preceding
ENSO events (1983–1986 and 1995–1997) were signifi-

cantly lower than those from ENSO periods (1986–1989
and 1997–1999; one-tailed paired t-test, P<0.05 for
both cases).

A scatter plot of annual CWD production and dry-
season precipitation (Fig. 5) shows that year-to-year
variability was related to the quantity of rain. In the
years of high CWD production, DMstand was largely
negative, but before and after droughts, it was generally
positive. Nevertheless, the 22-year average DMstand was
�1.2 Mg ha�1 year�1 (±3.1) (Table 1). DMI was quite
variable among years (F=9.3, P<0.0001, df=9) and
averaged 5.3 Mg ha�1 year�1 (±0.7) for the entire per-
iod (Table 1). Although there were no clear environ-
mental factors that accounted for DMI variability, there
appeared to be a pattern, with all plots showing declines
in some particular years.

Discussion

Above-ground biomass

Total above-ground biomass (for trees ‡10 cm DBH)
for tropical forests varies from less than 200 to more

Fig. 4 Above-ground biomass
(AGBT) for each 0.5-ha plot
and over the 1978–2000 study
period at the Linhares Atlantic
forest. Decreasing in above-
ground biomass was significant
between 1978 and 2000 (F=9.5.
P<0.003. R2 =0.15)

Fig. 3 Size distribution of dead
trees for all census intervals

242



the 400 Mg ha�1 (Clark et al. 2001a). Various factors
can be involved in this variability, with water avail-
ability among the most important (Clinebell et al. 1995;
Baker et al. 2003). Yet despite the fact that the Linh-
ares Reserve region received considerably less precipi-
tation (1,200 mm year�1 from January 1975 to
December 2000) than most other tropical forest re-
gions, and that ENSO events have a much larger rel-
ative effect on annual precipitation, AGBT estimates
from the data presented here (334.5±11.3 Mg ha�1)
are quite similar to other tropical forests with greater
annual precipitation.

Although our study presents a long detailed temporal
scale, it may have failed to take into account the spatial
variability of biomass because of its small sample size.
The 2.5 ha sampled in this study is smaller than the 6–
10 ha proposed by Chave et al. (2003) as the minimum
area for accurate estimates of biomass stock in tropical
forests. However, AGBT in this 2.5-ha study was quite
similar to values encountered in 250 plots of 20·80 m
(40-ha averaging 332.8 Mg ha�1 surveyed in RVRD in
1991, Jesus and Rolim 2004), demonstrating that plot
bias was not responsible for our large forest biomass
estimate. Our mean AGBT was calculated using an 11-
member temporal series, encompassing two periods with
extreme ENSO events (1987 and 1998), which greatly
intensified regional drought and tree mortality rates
(Rolim et al. 1999). The considerable spatial variability
among plots observed in this study is common for
tropical forests, and caused by factors such as variability
in soil characteristics, species composition, micro-topo-
graphic variability and differences in disturbance
regimes (Saldarriaga et al. 1988; Clark et al. 1998;
Laurance et al. 1999; Chave et al. 2001). In the area
studied there is little topographic variability, and no
significant differences in soil properties were found in
five plots (Jesus 2001). The largest part of the variability
among the plots was due to the occurrence of giant trees,
such as found in others studies (Brown et al. 1995;
Nascimento and Laurance 2002).

Tree mortality and recruitment

The mean mortality rate (2.0% year�1) is within of range
of 1.0–2.0% measured for tropical sites (Swaine 1989;
Hartshorn 1990; Phillips and Gentry 1994; Lugo and
Scatena 1996; Phillips 1996). Elevated recruitment rates
after catastrophic disturbance are also reported for
tropical forests (Lugo and Scatena 1996; Condit et al.
1996), and should likewise contribute to balancing out
the naturally high mortality rates. As shown here, can-
opy and emergent trees experienced higher mortality
than smaller trees during the 1987 drought. The same
pattern was found after droughts in other tropical sites
(Leighton and Wirawan 1986; Condit et al. 1995; Clark
and Clark 1996). It is noteworthy that the ENSO effects
occurred in all tree size classes—not just those with giant
trees—and were evident during both the 1987 and 1998
events. However, the 1998 ENSO event may have had
less impact on forest biomass because most drought-
susceptible large trees died during the 1987 event.

Surprisingly, there was no apparent effect of the 1983
ENSO on tree mortality and biomass in our study area.
Other research suggests that the 1983 ENSO did increase
tree mortality in a neotropical forest in Panama (Condit
et al. 1995, 1996), but for central Amazon forests, the
1983 ENSO appeared to produce less severe drought
with only minor effects on forest dynamics (Williamson
et al. 2000; Laurance et al. 2001). There is one plausible
reason for this finding. The 1983 dry season precipita-
tion was 68.7 mm, which is relatively high to be con-
sidered a severe drought, compared to 23.2 and 31.3 mm
of rainfall in 1987 and 1998, respectively.

In this study, the drought-year mortality increases
from 1.4 to 3.8 and 4.9% represent a magnitude of
increase of 2.4 and 3.5% in 1986–1989 and 1997–1999
intervals, respectively. These values are much higher
than 0.77% increase found in Panama in 1982–1985
ENSO interval compared to 1985–1990 post-drought
interval (Condit et al. 1995) and 0.79% for central
Amazon in 1997–1998 drought (Williamson et al. 2000).

Fig. 5 CWD as a function of
dry-season (May–August)
precipitation (precipitation
<50 mm corresponds to
severe ENSO events)
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This finding is unexpected considering that such semi-
deciduous forests, with many water-stress resistant tree
species, would be less susceptible to droughts than the
rain forests in the Amazon and Panama.

Biomass change

Estimates of DMI in mature tropical forests presented by
Clark et al. (2001a) range from 0.6 Mg ha�1 year�1 in
Hawaii to 7.6 Mg ha�1 year�1 on the Ivory Coast. Our
result for a plateau forest along the Atlantic coast of
Brazil (5.3 Mg ha�1 year�1) is within this range,
although the negative value for average DMstand

(�1.2 Mg ha�1 year�1) shows a deficit in biomass
accumulation during the 22 years studied, which is
driven by forest response to ENSO events.

To analyze this deficit of biomass accumulation we
need to detail the biomass components involved. It is
evident that higher mortality follows strong ENSO years
(1987 and 1998), and there were differences provoked by
ENSO years. Clark et al. (2003) found differences in tree
growth rates at La Selva, Costa Rica, ostensibly caused
by ENSO related effects of 1998. However, Nakagawa
et al. (2000) found little evidence for negative ENSO
effects on tree growth for surviving trees in Sarawak
forests, which may have been the result of rapid recu-
peration of photosynthetic capacity for these trees in the
months following the ENSO events.

Following a large reduction in forest biomass after
the ENSO events, DMI is generally greater than biomass
lost from tree mortality, and the forest slowly accu-
mulates lost biomass. Although not particularly clear in
the data presented here (Table 1), Chambers et al.
(2004b) found that, for a logged forest in the Central
Amazon, surviving trees exhibit significantly higher
growth rates following the death of nearby trees, and a
post-ENSO increase in DMI would accelerate biomass
recovery rates. It appears that in the absence of another
strong ENSO event, or other catastrophic disturbances,
DMI will continue to balance out the negative value for
DMstand (�1.2 Mg ha�1 year�1). Thus, we find that, at
least in 22 years, the forest was quite resilient to large
mortality events, with a rapid accumulation of lost
biomass. Chave et al. (2003) also found evidence for
rejecting the hypothesis that forests of Barro Colorado
in Panama are long-term sinks for atmospheric carbon,
finding a DMstand of �0.39 Mg ha�1 year�1 in the per-
iod 1985–2000. In addition, Clark (2004) also found no
net 4-year change (1997–2000) in estimated above-
ground biomass across the old-growth forest at La
Selva, Costa Rica.

These results do not accord with 38 plots (of 50)
found by Phillips et al. (1998), which showed an accu-
mulation of biomass for neotropical forests, and which
also stimulated a debate about methodological questions
involved in the analyses (Clark 2002; Phillips et al.
2002a; Baker et al. 2004; Lewis et al. 2004). Possible
explanations for this biomass accumulation include

forests response to climate disturbances, CO2 fertiliza-
tion, and other local disturbances (natural and anthro-
pogenic) (Fearnside 2000; Malhi and Grace 2000; Malhi
et al. 2002; Chambers and Silver 2004).

ENSO effects on carbon balance

Despite the spatial variability, results demonstrate that it
is important to measure temporal variability in DMI, for
which there is much less information in the literature, to
obtain a representative average, and begin to understand
factors accounting for tree growth variability. ENSO
brings profound alterations in tropical forests dynamics,
as much in Atlantic forests of Brazil as in other regions,
including: the Amazon (Gale and Barford 1999; Wil-
liamson et al. 2000; Laurance et al. 2001), Central
America (Leigh et al. 1990; Condit et al. 1992, 1995),
Borneo (Leighton and Wirawan 1986; Aiba and Kitay-
ama 2002) and Sarawak (Nakagawa et al. 2000).

Two propositions can be offered in relation to the
effects of ENSO. First, if the frequency of ENSO in-
creases as a result of climate change, changes in AGB
may continue to be negative and many forests may enter
into a biomass collapse dynamic, decreasing carbon
stocks with the loss of large trees, similar to that which
occurred in areas subject to fragmentation in the Cen-
tral Amazon (Laurance et al. 1997; Nascimento and
Laurance 2004). In this case an increase in ENSO fre-
quency could limit, or perhaps even reverse any ten-
dency of tropical forests toward biomass accumulation
(Phillips et al. 1998). Second, if DMstand approaches zero
in the coming years, this would suggest that ENSO does
not have a long-term effect on the biomass balance of
the Linhares Atlantic forest and the forest is in a steady
state dynamic with respect to biomass.

We find that in areas impacted by strongENSO related
mortality events, a biomass inventory carried out a few
years after the event will contain considerably less bio-
mass than an inventory carried outmany years later. Over
shorter time scales is entirely possible that increases in
AGBT will be due to temporary imbalances in the forest
structure as a result of past disturbances, such asENSOor
other causes of elevated mortality (Fearnside 2000). For
example, if we consider only the interval from 1989 to
1997 in Table 1 (8 years), a large increase in AGBT from
314.5 to 333.4 Mg ha�1 is demonstrated, and it could be
concluded that the forest is accumulating significant bio-
mass. Thus, depending on the timing and recurrence
interval of disturbance events, biomass inventories, par-
ticularly those carried out over the short term, can give
faulty conclusions concerning forest carbon balance.
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