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Abstract

The objective of this paper is to illustrate the importance of variation in water availability to
temporal variation in vegetation dynamics in arid and semi-arid ecosystems. We hypothesize
that fine-scale pulses of precipitation interact with longer scale variation in climate and
weather to generate temporal variation in plant community composition. Arid and semi-arid
regions exhibit great temporal variability in water availability as a result of variation in climate
and weather at multiple scales and vegetation-soil water feedbacks. The scales of variation
include: shifting climate regimes over centuries and decades, inter-annual variation in weather
patterns, seasonal differences in winter and summer precipitation, and within-season
variability in precipitation frequency and magnitude. In arid and semi-arid regions, pulses
of rainfall are separated by intervening dry periods of variable lengths. This situation results in
fluctuating availability of water that limits plant production and controls other ecological
processes, such as rates of nutrient cycling. In some semi-arid and arid systems, temporal
variation in water availability may create positive feedbacks that facilitate encroachment of C3
woody plant species into areas formerly dominated by C4 grasses. Our ability to predict these
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complex shifts in vegetation composition may be improved by including temporal variation in
climate, weather, and ecosystem processes.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Semi-arid and arid areas exhibit great temporal variability both in water
availability and vegetation dynamics. In some of these regions, rainfall is delivered
in discrete “pulses” followed by intervening dry periods of variable length (i.e.,
“interpulses”). Although many systems are characterized by wet and dry periods, the
distinction is that these pulse/interpulse periods differ so dramatically in soil
moisture that the biotic and abiotic function associated with these periods also
differs substantially, especially during the summer growing season (Austin et al.,
2004; Huxman et al., 2004; Schwinning et al., 2004). Rainfall pulses can be large or
small in magnitude and, in conjunction with temperature, wind, infiltration, surface
flow, and evapotranspiration, determine the length of time that the soil is wet or dry.

Patterns of wet and dry periods that occur at longer temporal scales interact with
these finer scale pulse dynamics to influence water availability (Loik et al., 2004). For
example, frequent small pulses may have different effects on water availability than
one large pulse, depending upon whether these pulses occur during a decadal
drought or during a wet period (Ni et al., 2002). We review evidence that the
oscillation between pulse/interpulse periods, interacting with decadal and longer
variation in climate and weather, is a primary driver of variation in plant community
composition across a range of temporal scales. This temporal variation interacts with
spatial variation in drivers and processes to generate the complex patterns and
dynamics observed at multiple spatial and temporal scales (Weltzin et al., 2003;
Peters and Havstad, 2006), and may play a role in the observed shift from
grassland to shrubland in the Chihuahuan Desert (Neilson, 1986). Our objectives
are: (1) to develop a conceptual framework of cross-scale interactions for temporal
variation; (2) to demonstrate the utility of this framework for understanding
grass—shrub vegetation changes using data from the Jornada Basin in the northern
Chihuahuan Desert; and (3) to present an experimental design that examines the
effects of fine-scale variation in precipitation pulses on the responses of shrubs and
grasses.

2. Conceptual framework for temporal variation and cross-scale interactions
Variations in water availability considered in this manuscript are a result of

climate and weather patterns interacting at multiple scales. Directional change in
climate or vegetation at shorter time scales may be mere variation at longer time
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scales. Climatic oscillation or variation can result from natural changes in broad
scale solar or atmospheric drivers and have important effects on shifts between
grasslands and shrublands (Neilson, 1986; Van Devender, 1995; Buck and Monger,
1999). Directional changes in global climate as a result of elevated concentrations of
atmospheric carbon dioxide are an additional source of variation at large temporal
scales that can influence broad scale patterns in vegetation through effects on plant
phenology and physiology (Parmesan and Galbraith, 2004). At decadal scales,
alternations between dry and wet cycles interact with longer-term climate patterns.
For example, changes in the Pacific Decadal Oscillation (PDO) index have been
reported to last 20-30 years and may produce fluctuations in sea surface
temperatures that result in abnormally wet or dry precipitation patterns (Zhang
et al., 1997). Variation exists in total amount of rainfall received within a year (wet
years vs. dry years), which may be a result of El Nifio/Southern Oscillation (ENSO)
that generates El Nifio/La Nifna events at 3—7 year cycles (Gutzler and Preston,
1997). Additionally, there is variation due to the seasonal patterns of rainfall in the
southwestern United States. In the Chihuahuan Desert, the majority of rain (> 53%)
falls during the summer growing season (July—September) as monsoonal rainfall.
This rainfall is derived from local convective processes acting on air drawn from the
Gulf of Mexico and Pacific Ocean and usually occurs as short duration, high
intensity storms that penetrate only shallow soil depths before creating run-off
events. These convective storms are spatially variable and occur over localized parts
of the landscape. Generation and redistribution of runoff lead to further spatial
variability in water availability (Rango et al., 2006). The remainder of the rainfall
occurs mainly during winter months (November—February). Winter storms are
generally frontal storms, which produce longer duration, less intense rainfall that
percolates to greater soil depths. Lastly, within a growing season, the “pulse-
pattern” of rainfall can vary in terms of the frequency, magnitude, and intensity of
rain events.

In our conceptual framework, these different scales of temporal variability in
climate and weather have different ecological impacts with interactions occurring
across temporal scales (Fig. 1). At the scale of centuries, variation in the
magnitude and proportion of summer vs. winter rainfall may interact with the
photosynthetic pathway of plants to determine the suite of plant functional
types that are possible on a landscape. Over decadal time scales, variation
in the magnitude and proportional amount of seasonal precipitation interacts with
these functional types on the landscape. Periods of decadal drought or above
average rainfall may also interact with broad scale centurial scale variability to
promote episodic recruitment events that change demographic structure and
species composition. Species composition affects the way the system can respond
to fine-scale (i.e., yearly and seasonal variation in water availability) precipitation
pulses. On finer time scales, precipitation from the previous season and species
phenology, determined by the interactions at decadal and centurial scales, may
influence carbon metabolism in plants and microbes, and determine patterns of
individual plant production. Thus, temporal variation in functional group
composition, species composition, and production by individual plants at a
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Fig. 1. Conceptual diagram illustrating the different scales of temporal variation in water availability and
the interactions between precipitation characteristics and vegetation characteristics that produce
ecosystem characteristics (black arrows). Gray arrows illustrate how temporal variation in functional
group composition, species composition, and production by individual plants is determined by cross-scale
interactions between climatic drivers and vegetation characteristics.

particular location is determined by cross-scale interactions between climatic drivers
and vegetation characteristics.

In addition to the long-term feedbacks between vegetation and climate, feedbacks
between plants and hydrologic processes can accentuate short-term temporal
variability in water availability. Conversion of grasslands to shrublands in the
Chihuahuan Desert results in larger bare spaces between plants (Schlesinger et al.,
1990). These changes in land surface cover may result in altered surface energy
budget components (Dugas et al., 1996). Open interspaces often have higher
temperatures and consequently, evaporative loss of surface soil water is greater than
for vegetated areas. This relationship has been documented in semiarid pinyon-
juniper woodlands (Breshears et al., 1997, 1998). Thus, interspaces and vegetated
areas may differ in duration of soil wetting as well as amount of water lost via plant
transpiration or evaporation. These processes are accentuated because changes in
land surface cover also affect distribution of overland flow, with runoff generally
greater from intershrub spaces (Wainwright et al., 2000; Abrahams et al., 2003). The
physical structure of shrub canopies also affects interception, infiltration (Bhark and
Small, 2003), and stemflow (Whitford et al., 1997). These structural effects impact
water distribution, and therefore may change soil water availability under shrubs
and in interspaces (Hennessy et al., 1985). Additionally, many woody shrubs have
been found to redistribute water (i.e., hydraulic redistribution) via their root systems
in response to soil water potential gradients. This passive behavior by deep-rooted
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shrubs can lift water from lower depths during dry interpulse periods when the
surface soil is dry; thus, changing the temporal dynamics of soil moisture (Caldwell
et al., 1998). During wet pulse periods when soil water potentials are reversed, both
Prosopis velutina (velvet mesquite) and Artemisia tridentata (big sagebrush) have
been shown to redistribute shallow soil water to lower depths within the soil profile
(Ryel et al., 2002; Hultine et al., 2003), potentially drying shallow soil at a faster rate.
These feedbacks between plants and the water cycle affect the temporal and spatial
patterns of water availability.

3. Temporal variation in climate and vegetation in the Chihuahuan Desert

We illustrate the utility of our temporal framework for understanding grass to
shrub conversion, patterns of plant productivity, and plant physiological responses
using multi-scale data from the Jornada ARS-LTER site in southern New Mexico,
USA (32°37N, 106°44W). We examine variations in water availability at five major
scales that are expected to influence vegetation dynamics: centennial, decadal, yearly,
within year, and within season (Fig. 2).

3.1. Century scale

During the past 20,000 years, paleoecological records indicate that vegetation in
the Northern Chihuahuan Desert has shifted between C3 shrublands in more arid
periods, C4 grasslands under more mesic conditions, and C3 woodlands during the
wettest periods (Van Devender, 1995; Monger, 2003). Multi-proxy records of the
isotopic composition of soil carbonates, fossil pollen records, packrat middens,
changes in lake levels, and erosion indicate that an increased period of aridity existed
about 2200 years ago that reduced the amount of C4 grasses and increased the
abundance of C3 shrubs (Van Devender and Spaulding, 1979; Monger et al., 1998;
Buck and Monger, 1999; Monger, 2003). During the past 1000 years, winter
precipitation as reconstructed by tree ring analyses for the region has varied around
the long-term mean of 95 mm with a standard deviation of 32 mm (Ni et al., 2002;
Fig. 2a). During the past century (1914-1996), regression and auto-correlation
analyses of precipitation data collected at the Jornada revealed that precipitation
has increased slightly as a result of a small increase in mean summer rainfall and a
more noticeable increase in mean winter rainfall (Conley et al., 1992; Wainwright,
in press).

These patterns of climatic change may be partly responsible for the recent increase
in cover and abundance of woody plants and associated decrease in perennial grasses
at the Jornada (Fig. 3), as well as throughout the southwestern United States
(Grover and Musick, 1990; Gibbens et al., 2005). At the Jornada, much of the
former C4 perennial grasslands have been replaced by C3 desert shrublands
dominated by Larrea tridentata (creosotebush) and Prosopis glandulosa (honey
mesquite) over the past 150 years. Vegetation data redrawn from Peters et al. (2004a)
depict the change in coverage of grass and shrubs through time (Fig. 3). Data were
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Fig. 2. Scales of temporal variability in precipitation. Panels illustrate the different scales of variation: (A)
century, (B) decade/annual, stars indicate El Nino events and solid black line represents mean annual
precipitation (237 mm) from 1914 to 2003, (C) season, (D) daily precipitation at the Jornada Experimental
Range. The centennial winter rainfall pattern (panel a) is modified from the reconstruction for Division 8,
Southern New Mexico in Ni et al. (2002) and the trend line (solid black line) shows a 25-year moving
average of annual precipitation.
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Fig. 3. Vegetation data redrawn from Peters et al. (2004a) depict the change in coverage of grass and
shrubs through time. Rainfall data are also plotted through time to illustrate patterns of summer rainfall
(July—September) and for the remainder of the year. A slight increase in summer rainfall and a more
noticeable increase in winter precipitation have been documented over the last century (see Wainwright, in
press).

derived from historic and current vegetation maps of the Jornada site. A modeling
study by Gao and Reynolds (2003), supports the idea that wetter winters and drier
summers during the last century facilitated the grass to shrub conversion, especially
in the context of an extreme drought in the 1950s. However, temporal variation in
rainfall failed to reproduce vegetation shifts in the earlier part of the century,
suggesting multiple causal factors such as grazing are likely to be involved (Gao and
Reynolds, 2003). On geologic time scales, increased shrub cover was associated with
greater aridity (see above), yet within the last 150 years it appears that a slight
increase in total precipitation has favored shrubs over grasses, largely due to
increased winter precipitation. Because of their ability to access deeper soil moisture,
the relative advantage of shrubs over grasses is enhanced both when competition for
shallow water is increased due to greater aridity (as in the long-term climate record)
and when availability of deep soil water is greater due to increased winter
precipitation (as in the last 150 years). Additionally, changes in aridity over the
geologic record were potentially of larger magnitude than those during the past
150 years (Monger, 2003).
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3.2. Decadal scales

Decadal patterns can be observed by examining annual rainfall totals from 1914 to
2003 (Fig. 2b). The Chihuahuan Desert has experienced several periods with below
average rainfall for consecutive years, including an extreme, prolonged drought
during the 1950s. Data from long-term permanent quadrats at the Jornada showed
that the 1950s drought resulted in a loss of grass cover (Herbel et al., 1972) and an
increase in honey mesquite and other shrubs (Gibbens and Beck, 1987). The drought
reduced grass species frequency and cover on most parts of the landscape. A return
to average rainfall patterns in subsequent years restored grass cover and species
composition in lowland quadrats, but did not restore grass cover in many quadrats
located in upland communities. Black grama (Bouteloua eriopoda) became locally
extinct in 39% of the upland quadrats during this drought (Peters et al., 2004b).
Lowland sites typically have heavier textured soil and receive additional water from
overland flow because of landscape position; thus, lowland quadrats may have more
water available to plants.

3.3. Annual scales

At annual scales, variance in rainfall among years is high in arid and semi-arid
systems such as the Jornada (CV = 37%) (Wainwright, in press). Nine El Nino
events have occurred at the Jornada over the past 70 years (Fig. 2b). Simulation
modeling has illustrated that ENSO events may promote changes in community
structure through differential seedling establishment. Modeling results indicated the
probability of establishment in El Nino vs. La Nina years varied by species for
perennial grasses (Peters, 2000). The large temporal variation in rainfall in semi-arid
and arid regions is often correlated with annual patterns in vegetation productivity,
but variability in vegetation productivity can exceed that of rainfall variability
(Ludwig, 1987; Le Houérou et al., 1988; Lauenroth and Sala, 1992). At the Jornada,
above-ground net primary productivity (ANPP) has been measured three times per
year for 10 years in five dominant plant community types (creosotebush, mesquite,
tarbush [Flourensia cernua], upland grasses, and playas) at three sites in each
community type. Correlations between precipitation records and ANPP on a site-by-
site basis were not significant (Huenneke et al., 2002). This lack of predictive power is
likely due to complex relationships among factors that determine soil water
availability (e.g., soil type and texture, feedbacks between vegetation and hydrologic
processes, landscape position and topography) as well as lack of sampling for
belowground net primary production.

3.4. Seasonal scales

Seasonal distribution of total monthly rainfall at the Jornada during a 10-year
interval is shown in Fig. 2c. The Jornada is characterized by a peak in monthly
precipitation in the summer (July—September) and a less pronounced peak in the
winter (December—February). The seasonal distribution of rainfall appeared to
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influence ANPP in the different community types described above (Huenneke et al.,
2002). Grassland ANPP was typically greatest after wet summer growing seasons,
whereas communities dominated by creosotebush and mesquite had increased ANPP
following wet winter/spring conditions. Thus, ANPP appears to depend in part on
the interaction of within year seasonal precipitation patterns and plant phenology. It
has been suggested that temporal partitioning of water resources by species with
different phenologies is a mechanism to reduce competition in water-limited
environments (Reynolds et al., 1999, 2000). However, in the Jornada Basin, the
duration of phenological activity is generally longer for shrubs than grasses and may
overlap with grass species phenological activity, especially in the case of mesquite.
Additionally, species such as mesquite may use water from small and large rainfall
events and appear to be highly flexible in their ability to use water from different soil
depths (Snyder and Williams, 2003; Snyder et al., 2004). Consequently, there may be
little realized phenological partitioning for grasses when mesquite shrubs are present.

3.5. Within season scales

Precipitation pulses within season on the Jornada are shown for a 3-year interval
(Fig. 2d). In general, all three warm deserts (Mojave, Sonoran, and Chihuahuan) in
the southwestern United States and northern Mexico are characterized by a high
frequency of small storm sizes (<10 mm) and a low frequency of large events, and
time intervals between rain events are generally between 5 and 10 days (Reynolds
et al., 2004). Rainfall data (1920-2000) from the Jornada were used to determine
the frequency distribution of summer (June—September) rainfall event size classes
in 5-mm increments (data not shown). The mean number of rainfall events below
Smm and between 5 and 10 mm was 14 and 5, respectively. Rainfall events in 5-mm
size intervals between 10 and 30 mm occurred on average between 2.5 and 1.5 times
per summer.

Although global climate models predict changes in the amount and seasonality of
precipitation, little is known about the ecological effects of changes in frequency and
size of rainfall events within season (but see Knapp et al., 2002; Fay et al., 2003).
Changes in frequency and size of rainfall events may alter water availability in
shallow soil layers and produce differential patterns in the depth and duration of soil
wetting. Because various ecosystem components (grass roots, shrub roots, biological
soil crust, and the majority of soil microbes) vary with depth in the soil profile, these
changes in wetting patterns may have important effects on plant production and
biogeochemical cycles (Austin et al., 2004; Huxman et al., 2004). Small frequent
pulses likely favor shallow rooted, fast responding plant species that can take
advantage of these rain events (Sala and Lauenroth, 1982). Photosynthetic activity of
biological soil crusts (Belnap et al., 2004) and shallow soil microbial respiration may
also be affected by within-season temporal variability of rainfall (Austin et al., 2004).
Larger storm events and longer interpulse periods of no rainfall may favor
production by slow responding deep-rooted shrub species that access deep stored
water (Ogle and Reynolds, 2004). We are testing these ideas with a precipitation
manipulation experiment (described below).
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3.6. Cross-scale interactions

Coexistence between different functional groups (i.e., herbaceous and woody
plants) in semi-arid and arid regions has been suggested to occur as a result of
partitioning of soil water resources between deep and shallow layers (Walter, 1971).
Walter’s two-layer hypothesis suggests functional groups vertically partition
resources according to their growth strategy: shallow-rooted herbaceous plants
primarily use shallow soil water derived from growing season precipitation whereas
deep-rooted, woody perennials primarily use more consistently available deep soil
moisture derived from winter precipitation. In contrast to this hypothesis and as
illustrated in this paper, there is mounting evidence to suggest that many shrub
species have both shallow and deep roots and are capable of using shallow soil water
following rainfall events, while relying on deeper water during dry periods (Flanagan
et al., 1992; Donovan and Ehleringer, 1994; Lin et al., 1996; Weltzin and McPherson,
1997; Dodd et al., 1998; Williams and Ehleringer, 2000; Gibbens and Lenz, 2001;
Gebauer et al., 2002; Schwinning et al., 2002; Snyder and Williams, 2003). The
reliance of woody plants on deep soil water during dry periods, in conjunction with
evidence of climate change within the last century, suggests that a greater reservoir of
stored deep soil water may have favored the survival of woody plants in areas
formerly dominated by perennial grasses. The importance of winter precipitation for
woody shrubs is supported by an analysis showing greater woody plant abundance
in sites with lower mean annual precipitation (MAP) and a greater proportion of
winter rainfall (Paruelo and Lauenroth, 1996). Although Ogle and Reynolds (2004)
did not observe a relationship between winter precipitation and shrub abundance,
they did report a positive relationship between MAP and grass abundance. The
prevailing climate pattern, perhaps expressed at the scale of centuries or beyond,
dictates that shrubs and grasses both can exist at the Jornada. However, it is the
amount and seasonality of precipitation that varies at the scale of decades that may
determine which of the two functional plant types predominate. Whereas, annual or
within-season variation in precipitation influences the relative productivities of the
two functional types.

4. A fine-scale precipitation experiment

We are currently examining the effects of fine-scale temporal patterns in
precipitation on plant performance and ecosystem processes at the Jornada by
manipulating annual, seasonal, and within-season rainfall pattern. We applied a 60-
mm increase in summer precipitation (46% increase relative to mean summer
rainfall) at two different frequencies and magnitudes over 12 weeks during the
summer growing season to replicated plots containing both honey mesquite and
black grama grass. Plots received either: ambient precipitation (controls), ambient
plus frequent small (5-6mm) rainfall events applied weekly, or ambient plus
infrequent large (20-24 mm) events applied monthly. The hypothesized response to
these rainfall treatments is that increased shallow soil moisture (measured in the
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upper 12 cm of the soil profile) will increase the relative photosynthetic contribution
of black grama grass. At the extreme ends of the continuum (Fig. 4), shallow soil
moisture may have little effect on photosynthetic rates of shallow rooted species, but
for different reasons. At the dry end of the continuum, water is unavailable to plants.
At the wet extreme, there is likely a threshold level of soil water beyond which
additional soil moisture does not confer a physiological improvement due to other
plant constraints (e.g., active root area, plant density, secondary limitation by other
resources such as nitrogen).

Preliminary results from an isolated watering event in August 2004 on a sandy
loam soil are plotted with a predicted response curve (Fig. 4). These data demonstrate
that the different rainfall treatments, as reflected by differences in soil water content
at 0 to 12cm depth, influenced the degree to which grasses responded with increased
photosynthesis (Fig. 4). Similar to our predicted response, there was an increase in
black grama photosynthesis between 6% and 8% volumetric soil moisture, indicating
that there is a potential threshold level of soil moisture that causes the leaf-level
photosynthesis ratio to shift to greater influence of black grama. The field data
indicate the maximum threshold of black grama response may have been reached at
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Fig. 4. Conceptual response curve (solid sigmodial line) illustrating the effect of rainfall magnitude on the
relative contribution of black grama photosynthesis (4) to mesquite photosynthesis (A4). Field data on
leaf-level gas exchange rate ratios of black grama:mesquite () and volumetric soil moisture in the upper
12cm of soil after simulated storms of different sizes in August 2004 are plotted for reference.
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12% soil moisture, the approximate field capacity for sandy loam soils. Mesquite
photosynthesis for this sampling day was relatively insensitive to shallow soil
moisture (approximately 22 pmolm™2s~") regardless of watering treatment. There-
fore, the change in the ratio is a function of increased black grama photosynthetic
rates. These preliminary data support the hypothesis that oscillations between pulse
and interpulse can potentially “shift” the biological dominance of this system.
Magnitude of the rainfall events influences immediate photosynthetic response, but
temporal variation, or the integration of soil water over time due to storm frequency
and magnitude, will determine the length of time that the photosynthetic contribution
of these different plant functional types persists and the magnitude of this response
through time. This integration through time, in conjunction with temperature, should
explain much of the seasonal patterns of plant productivity.

5. Conclusions

Just as islands of fertility under shrubs concentrate biological activity in space,
rainfall pulses concentrate biological activity in time. As Holling (1992) suggested, the
dominant pulses can entrain many other ecosystem processes, including the dynamics
of nitrogen cycling and the population dynamics of plants and herbivores (see also
Schwinning and Sala, 2004). The impacts of climatic events at different temporal scales
propagate through this ecosystem via direct trophic relations and also through indirect
or non-trophic relationships and feedbacks. The pulse pattern leaves an ecological
legacy, which influences subsequent responses to rain and drought.

Temporal variation in water availability is important for explaining complex
patterns in these heterogeneous desert landscape systems and is specifically related to
several key elements discussed by Peters and Havstad (2006; i.e., context, transport
processes, feedbacks, and resource redistribution). As with spatial variability, the
temporal variation in water availability and plant response are nonlinearly related
and exhibit threshold behaviors. Our conceptual framework of cross-scale temporal
variation provides a dynamic view of landscapes that complements the spatial model
of landscape heterogeneity. Arid and semi-arid systems are characterized by pulses
of high and low biotic activity driven by temporal variation in water availability.
Understanding this variation will help to identify thresholds of resource availability
that determine species-specific responses, integrate species responses through time as
a function of resource availability, and predict dramatic shifts in community
composition from episodic recruitment events generated by complex cross-scale
temporal interactions in water availability. This understanding is essential for
predicting the effects of directional climate change on ecosystem structure and
function.

5.1. Management opportunities

The fluctuations inherent to pulsed ecosystems are usually disruptive, or at least
inconvenient, to human societies based upon predictable “average’ conditions. Any
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sustainable management plan must treat these recurrent pulses as an inherent feature
of the ecosystem, rather than as an unpredictable boon or disaster. Pulsed
ecosystems allow managers to focus management activity at critical times. The
same pulses that complicate and threaten static management plans also offer a
valuable management opportunity. Obviously, management activities change in
response to the arrival or failure of rain pulses, but it is not so obvious that
management during wet periods should be preparing the ecosystem for the next
drought and that management during drought influences the post-drought recovery.
Droughts, floods, and other ecologically important pulses are, in a sense, predictable.
We do not know exactly when they will occur, but we know that they will occur. We
can predict and use the changes in ecosystem function that accompany the pulse to
multiply the effectiveness of management actions. By understanding and capitalizing
on the interactions across temporal scales, managers can be prepared to take
advantage of rare combinations of conditions to restructure or rehabilitate
ecosystems.
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