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Abstract.  Recent and rapid forest mortality in western North America and associated 

changes in fire frequency and area burned are among the chief concerns of ecosystem 

managers. These examples of climate change surprises demonstrate nonlinear and 

threshold ecosystem responses to increased temperatures and severe drought. Given these 

changes, ecosystem managers in the southwestern United States consistently request 
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region-specific estimates of climate and vegetation change, in order to provide guidance 

for management of federal and state forest, range, and riparian ecosystems. In order to 

help address this need, we developed downscaled climate projections for the Southern 

Colorado Plateau (SCP: 35°-38°N, 114°-107°W), centered on the Four Corners states. 

We selected five of twenty-two global climate models (GCMs) from the archive of model 

runs used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. 

We based our model selection on GCM simulations of observed critical seasonality for 

vegetation in the SCP. We used three key seasons in our analysis, winter (November-

March), arid foresummer (May-June), and monsoon (July-September). We statistically 

downscaled projections of temperature and precipitation to a 4 km grid. Projections for 

the SCP describe a warmer future, in which annual temperatures seem likely to increase 

by 1.5°-3.6°C by mid-century, and 2.5°-5.4°C by the end of the century, depending on 

the model chosen. Annual temperatures are projected to exceed the 1950-1999 range of 

variability by the 2030s. Annual precipitation changes are more equivocal. A 

conservative estimate, using a 22-model ensemble average, indicates that SCP annual 

precipitation may decrease by 6% by the end of the century. The least equivocal 

precipitation projection shows SCP May-June arid foresummer precipitation declining, 

by 11-45% during the 21st century. Decreasing spring precipitation and substantially 

increasing temperatures increase the likelihood of further episodes of forest dieback 

during the 21st century. 

 
 Key words: downscaling, climate change, vegetation change modeling, Southern 

Colorado Plateau 
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1. Introduction 

 

Between 2000-2004, the USDA Forest Service estimates that nearly 1.4 million hectares 

of forest land (about 60% in piñon-juniper and the rest in ponderosa pine) in the 

southwestern U.S. were impacted by mortality (USDA, 2008). This recent and rapid pine 

mortality in the southwestern United States (Shaw et al., 2005) has raised concern among 

land managers regarding the potential impacts of severe sustained drought and climate 

change on southwestern ecosystems. Research on pinyon pine mortality in the Southern 

Colorado Plateau suggests that a combination of drought and unusually high temperatures 

depleted soil moisture to a greater extent than during past drought episodes, thus 

exposing trees to “global-change-style” drought stress (Adams et al., 2009; Breshears et 

al., 2005). Moreover, researchers speculate that increasing temperatures also enhance 

insect life cycles and predispose southwestern forests to greater risk of massive mortality 

in response to drought (Stephenson et al., 2006; Burkett et al., 2005; Logan et al., 2003). 

Concerns about massive and abrupt changes to southwestern ecosystems are reinforced 

by observed and projected regional climate changes, which include earlier bud break and 

flowering (Cayan et al., 2001), enhanced disturbance regimes (Westerling et al., 2006), 

changes to winter precipitation and snowmelt (Knowles et al., 2006; Stewart et al., 2005), 

increased occurrence of climate and weather extremes (CCSP, 2008b; Seager et al., 2007; 

Diffenbaugh et al; 2005; Meehl et al., 2004). Changes in climate may alter the 

distribution and abundance of species through local-to-regional extinctions, migration, 

and adaptation to new climates. Given the variety of plausible changes and their 
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ramifications for ecosystem function, erosion, and land management agency mission 

goals, managers require credible estimates of future vegetation and ecosystem changes. 

 

The primary climatic variables affecting the distribution of plant species in the area are 

minimum temperature and seasonal moisture availability (Thompson et al., 1998). 

Moisture availability is a compound result of temperature, precipitation, and humidity; 

thus, modeling the relationship between climate and vegetation within arid regions can be 

complex, involving seasonal changes in multiple variables. In arid regions, such as the 

Southern Colorado Plateau (SCP; Figure 1), minor declines in total precipitation, small 

increases in precipitation variability, or seasonal shifts in precipitation, can have sizeable 

effects on vegetation. If combined with even minor increases in temperature, the impacts 

on vegetation can be extensive. 

 

Climate has long been known to be important in determining the distribution of native 

plants on the landscape. The physiological adaptations of individual plant species allow 

them to take advantage of seasonal patterns in available moisture.  Topographic diversity 

within Northern Arizona creates several vegetation life zones within the region.  

Temperature and precipitation can vary greatly from the lower regions of the Grand 

Canyon to the top of the San Francisco Peaks, but the seasonality of these parameters is 

the same, regardless of altitude, slope, and aspect.  Annual precipitation follows a 

bimodal distribution, split between large, spatially coherent, winter frontal storms and 

isolated summer monsoon convective storms. 
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Moisture surplus in the SCP typically occurs from November to March (Figure 2). April 

reflects a turning point when monthly mean temperatures rise to a point where the 

growing season typically begins even as precipitation decreases.  By May and June, 

temperatures rise high enough to affect water vapor pressure. The typically sparse rainfall 

does little to offset high levels of potential evapotranspiration (PE).  This period of time 

can cause severe vegetation stress and even mortality in seedlings lacking an established 

root system and, during extreme years, in established perennial species (Breshears et al., 

2005). Many of the perennial bunch grasses common to northern Arizona remain semi-

dormant during this time period.  For woody plant recruitment, this is often a critical 

period; ponderosa pine (Pinus ponderosa), the dominant tree in the region, has been 

shown to have had cohort events occurring during anomalously cool and wet May-June 

periods (Savage et al., 1996). Conversely, ponderosa forests are most susceptible to 

damage from bark beetle infestation and wildfires when these pre-monsoon months are 

anomolously dry (Adams et al., 2009).  

 

On average, Southern Colorado Plateau summer monsoon precipitation begins in mid-

July (Higgins et al., 1999). Although it occurs during a time when PE and average 

monthly temperature are at their annual peaks, it typically brings enough precipitation to 

decrease the moisture deficit during this time of year (Figure 2). As average monthly 

temperature begins to decrease in August, monsoon precipitation reaches its regional 

apex, which further decreases the moisture deficit. By mid-September, monsoon 

precipitation typically decreases, but so does temperature. October, like April, is a 

transition period between annual moisture surplus and deficit. 
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Vegetation models can utilize information on sub-seasonal and interannual climate 

variations, including the moisture balance variations described above, to project future 

ecosystem change. This can help provide guidance needed by land managers to evaluate 

management strategies and climate change adaptation options (e.g., Bachelet et al., 

2003). Climate change impact studies, using vegetation models, have taken two general 

approaches: (1) statistically modeling shifts in the distribution of acceptable climate areas 

(potential habitat) for individual species, and (2) simulating ecosystem processes using 

vegetation units. The first method has been criticized for not including important 

ecosystem processes (Bonan et al., 2003; Morin et al., 2008), and the second method has 

been criticized for not taking into account species-specific responses to change (Rehfeldt 

et al., 2006). Paleoecological studies have long suggested vegetation shifts of individual 

species (e.g., Jackson and Overpeck, 2000). Changes have rarely been described as a shift 

of a classified vegetation association, unless the association is defined by one species.  

 

This paper addresses the initial phase of efforts to model changes in individual plant 

species distributions on the Southern Colorado Plateau. Vegetation modeling will be 

applied to data from the 3,000 m elevation gradient from the low deserts of the Grand 

Canyon to the alpine tundra of the San Francisco Peaks in northern Arizona. This is an 

area for which we have compiled abundant baseline GIS data as well as information from 

numerous studies of ongoing ecological changes. We hypothesize that many future 

disturbance processes influenced by climate such as bark beetle outbreaks, drought 

mortality, wildfire frequency, and exotic species spread can be simulated using our 
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climate model results. We describe here the process and results of GCM selection and 

statistical downscaling of climate parameters for input into process-based landscape-scale 

vegetation models.  In section two, we describe the GCM data, downscaling methods, 

and model selection criteria. In section three, we discuss the GCMs and ensemble 

averages selected, and we examine the spatial and temporal fidelity of the GCMs in 

reproducing the seasonal cycle of temperature and precipitation over the domain of the 

study region. In section four, we discuss the GCM projections for 21st century over the 

study domain, and compare our results with projections from other studies. In section 

five, we evaluate the ecological implications of the projected changes, discuss 

implications for the vegetation modeling component of the study, and we discuss 

alternatives to our approach that may inform future studies. Section six contains a 

summary of major conclusions. 

 

 

2. Data and Methods  

 

Historic Climate Records 

We used mean monthly temperature and monthly total precipitation data from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) 4 km grid cell 

resolution dataset (Daly et al. 1994) (www.prism.oregonstate.edu).  PRISM uses point 

data, spatial data sets, a knowledge base, and expert interaction to generate estimates of 

gridded monthly climatic parameters (Daly et al., 2001). A combination of linear 

regression and a series of rules, decisions and calculations set weights for the station data 
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entering the linear regression (Daly et al., 2002). The weighting function contains 

information about relationships between the climate field and geographic or 

meteorological factors. Weighting factors include measures such as distance from the 

predictand location, elevation, station clustering, vertical layer (to account for local 

inversions), topographic facet (to account for rainshadows), coastal proximity, and 

effective terrain weights (Daly et al., 2002). We used PRISM estimates for the period 

1895-2000, and 1950-1999 as the climatological average period for calculating 

anomalies. PRISM provides the most topographically precise, methodologically sound, 

quality controlled historic climate data set available for century-long time scales; thus, 

PRISM is a robust choice for spatial and topographic concerns that underlie the needs of 

vegetation modeling. 

 

Global Climate Model (GCM) Projections 

We garnered climate model projections, used in the Fourth Assessment Report (AR4) of 

the Intergovernmental Panel on Climate Change (IPCC), from the Program for Climate 

Model Diagnosis and Intercomparison (PCMDI) archive. Details on the models and their 

configurations are available at http://wwwpcmdi. llnl.gov/ipcc/about ipcc.php. These 

projections used coupled ocean-atmosphere models (AOGCMs) to simulate climate 

variations spanning the late 19th Century to the end of the 21st century (see Meehl et al., 

2007); this generation of models is referred to as Coupled Model Intercomparison Project 

version 3 (CMIP3). We analyzed, individually, 22 of these models (48 simulations; Table 

1) that are forced with estimated greenhouse gas and aerosol changes from the late 19th 

century through 1999, and the IPCC Special Report on Emissions Scenarios (SRES) A1B 
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scenario from 2000 to 2100. The A1B scenario, sometimes referred to as “the medium 

non-mitigation scenario” (Moss et al., 2008), describes a future world of rapid economic 

growth, with global population that peaks in mid-century then declines, and rapid 

introduction of new and more efficient technologies that are balanced such that no single 

source of energy is overly dominant (Nakicenovic et al., 2000). We analyzed total 

monthly precipitation and monthly mean temperature for each individual model and the 

22-model ensemble mean (Hoerling et al., 2007).  

 

 

Downscaling 

The AR4 GCMs use a variety of grid resolutions, typically in the range of approximately 

2.5° (~300 km in middle latitudes) per side of the grid box. The first step in the data 

treatment is to align the GCMs to a common grid, using inverse distance weighting 

(Eischeid et al., 2000). Once the GCM estimates for each parameter have been re-

gridded, we statistically downscale the GCM estimates to the 4 km grid resolution 

required for the vegetation change analysis, using the method described by Salathé 

(2005). To remove the bias between the large-scale simulated climate parameter and the 

observed climate parameter at each grid cell, we apply monthly corrections so 

magnitudes of the GCM simulations of the historic period conform to observations for 

the 1950-1999 period of overlap with the PRISM data. The 20th century runs runs used to 

fit each model are simulations forced by historic variations in greenhouse gases, solar 

output, and atmospheric aerosol loading. For each of the models presented here, the 20th 

century runs were obtained from the PCMDI archive. The aforementioned biases are 

presumed to be the same from year to year, because at the monthly time scale the models 



 10

can resolve the large-scale weather systems that generate observed temperature and 

precipitation across the Colorado Plateau. 

 

The IPCC Fourth Assessment Report notes that more than 75% of the models 

overestimated western North America annual and seasonal precipitation (Christensen et 

al., 2007). The median precipitation bias was highest for winter (93%, December-

February) and lowest for summer (28%, June-August); the median annual precipitation 

biaswas 65%. Western North America temperature was underestimated by most AR4 

GCMs (Christensen et al. 2007); the median bias for annual temperature was -1.3°C. The 

most pronounced underestimation of seasonal temperature was for spring (March-May); 

the median bias was -2.0°C.  

 

The method uses the PRISM estimates to impose spatial structure to the GCM-simulated 

precipitation and temperature, while preserving the atmospheric processes driving the 

simulations. As mentioned by Salathe (2005), Widmann et al. (2003) used a similar 

method, referred to as “local scaling.” The spatial biases and magnitudes are corrected 

independently for each model, by multiplying the simulated parameters by monthly bias 

factor (for precipitation) and taking the difference between the simulation and the bias 

factor (for temperature) at each grid point. 

 

Let Pmod(x, t) be the simulated monthly precipitation for the large-scale gridpoint in 

location x and at time t (in months); (Pmod)mth is the monthly mean taken over the period 
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of overlap between the simulated data and observations (Pobs)mth. The downscaled 

monthly mean precipitation (Pds), then, can be calculated by:    

 

Pds (x,t) = Pmod(x,t) (Pobs)mth/(Pmod)mth 

 

The fitting is performed independently for each month. 

  

Surface air temperature is downscaled in a similar way. For temperature, the adjustment 

uses the difference between the mean bias and the observations. Let Tmod(x, t) be the 

simulated monthly temperature, (Tmod)mth be the simulated monthly mean taken over the 

fitting period, and (Tobs)mth be the monthly mean of the observations taken over the fitting 

period. Then, the downscaled monthly mean surface temperature can be calculated by:  

 

Tds (x,t) = Tmod(x,t) + [(Tobs)mth – (Tmod)mth] 

 

This correction assumes that the large-scale temperature predicts the local temperature, 

given the removal of a monthly bias in the mean. Salathé (2005) notes that this additive 

methodology may be thought of as a lapse-rate correction due to the elevation difference 

of the local gridpoint relative to the GCM grid. Like Salathé, we make no allowance for 

possible changes in the lapse rate as a consequence of climate change.  Despite these 

limitations to the aforementioned methods, and the dependency of this statistical 

approach on the accuracy of the regional circulation patterns produced by the GCMs 

(CCSP, 2008a), the method is computationally efficient, and previous studies show a 
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relatively high confidence in the simulations of storms and jet streams in the middle 

latitudes (CCSP, 2008a). 

 

Ranking procedure  

In order to determine the most appropriate GCMs to use in the vegetation change 

analyses, we ranked the models, using four metrics based on the fit between the GCM 

climatological estimates of seasonal precipitation during the period of fit and the 

observed seasonal precipitation averaged over the period 1950-1999. We compare 

observed parameters and GCM projections for three seasons chosen for their influence on 

Colorado Plateau vegetation: November-March (winter), May-June (pre-monsoon) and 

July-September (monsoon). We did not assess fit between simulated and observed 

temperature, because it is well known that there is good agreement between model 

temperature simulations for western North America (IPCC, 2007), and the bias 

corrections should account for differences in magnitude.  We acknowledge that, 

compared with temperature, spatial variations in precipitation are less well understood 

and that there is a greater spread between models in simulated precipitation – thus, choice 

of models can make a difference in the application of projections for decision-making 

(IPCC 2007; CCSP, 2008a; Brekke et al., 2008). We assume that models that simulate 

well the recent precipitation history of these key seasons are likely to simulate key 

characteristics of future climate. In using this metric, we acknowledge that we cannot 

assess whether well-fitting simulations for our region produce the “right results” for the 

wrong (mechanistic) reasons.  
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We computed four values for each model, using metrics computed seasonally and then 

averaged, for the domain of interest, the continental United States west of 100°W. These 

are as follows: 

 

• a map pattern relationship based on the correlation coefficient between simulated 

and observed precipitation, over the domain of interest ;  

• a map pattern relationship based on the congruence coefficient for the same; 

• the ratio of simulated/observed area-averaged precipitation based on the seasonal 

precipitation totals in millimeters; and  

• the ratio of simulated/observed area averaged precipitation based on the seasonal 

precipitation expressed as a percentage of the annual total.  

 

These four sets of metrics for each of the 22 models were then ranked, and the ranks 

summed for each model. The best rank for each metric is 1, and the worst is 22. The best 

possible cumulative rank is 4, i.e., a rank of 1 for each of the four metrics. For example, 

the HAD model produced the following ranks: 1, 3, 3, 3, which yielded an overall score 

of 10 (Table 1).  

 

We acknowledge that the GCMs differ significantly in terms of basic physical and 

dynamical design and number of atmospheric and oceanic layers; accounting for such 

factors may have resulted in a different choice of models. For example, process-based 

measures, such as the ability of a model to reproduce the El Nino-Southern Oscillation 

(ENSO), are certainly appropriate for studying Colorado Plateau climate; however, a 
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model with acceptable ENSO simulation may lack acceptable monsoon simulation. 

Although several studies project decreasing annual precipitation in the southwestern 

United States (IPCC, 2007; Seager et al., 2007), we recognize the limitations of 

statistically downscaling GCM output to our study area. As we show below, the annual 

cycle of precipitation for the western USA is poorly simulated by many of these models. 

Most GCMs overestimate regional winter precipitation (Christensen et al., 2007). 

 

 

3. Results: Model selection 

 

The results of the ranking exercise are presented in Table 1. The overall score for the 

HAD model (10) produced the lowest rank of all models used in this analysis – that is, 

HAD precipitation for 1950-1999 was most faithful to the seasonal cycle and spatial 

distribution of precipitation in the observed record. The next closest score was 26 

(ECHAM5). For each of the four ranking metrics, the order of models (best/lowest to 

worst/highest) did not change much (not shown).  In other words, any of the above four 

metrics individually produce the same order as that for summing the four and then 

ranking the models. Three other models were selected, based on subjective criteria. 

CSIRO (score 42) and CNRM (score 42), which tied for rank 9 of 19, were included 

because together they bracket the range of published projections for aridity in the 

southwestern United States (Seager et al., 2007). Seager and his colleagues modeled 

precipitation minus evaporation anomalies (P-E) using A1B emissions scenario 

projections for 19 IPCC AR4 models. Mid-century (2041-2060) projections ranged from 
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about -0.12 mm/day (CNRM) to no detectable change (with CSIRO and HAD both 

showing near zero change or slight increases in P-E) (Figure 2 of Seager et al., 2007). 

NCAR (score 50; rank 11) was selected because of opportunities to use this model in 

collaboration in collaboration with other investigators, in order to expand further upon 

this work. None of these five models required flux corrections in order to maintain a 

stable climate in control runs (Kripalani et al., 2007). A 22-model ensemble mean (22-

ME) also was included for comparison with the individual models.  Ensemble means 

generally improve the performance of climate simulations, probably because model 

errors arise from internal climate variability and uncertainties in model formulation, and 

such errors effectively cancel out when large numbers of models are averaged (Reichler 

and Kim, 2008).    

 

Not surprisingly, the GCMs more closely simulate the seasonal cycle of 1950-1999 

Colorado Plateau monthly mean temperature than they simulate the seasonal cycle of 

monthly mean precipitation (Figures 3, 4). This is consistent with results from global-

scale studies; Covey et al. (2003) found that historic global temperatures generated by 

CMIP2 coupled atmosphere-ocean Global Climate Models (AOGCMs) correlated 

exceedingly well with historic observed temperatures (r > 0.93 for each model), whereas 

correlations between AOGCMs and observed precipitation ranged from 0.4 to 0.7.   

 

Temperature 

The ECHAM5 model shows the closest match to the observed seasonal cycle of Colorado 

Plateau temperatures (Figure 3). HAD exaggerates the seasonal temperature range; HAD 
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temperatures are too hot in summer and too cold in winter. The NCAR model shows a 

similar exaggeration of average monthly temperature range. The CNRM and CSIRO 

models exhibit seasonal cycles similar to the ensemble average: temperatures that are 

cooler than the observed average during the winter, spring, and fall months, but near the 

observed average during the summer months. 

 

Because temperature is a more spatially coherent variable, spatial patterns of GCM 

temperature simulations were less varied those for precipitation (not shown). All models 

simulate the spatial patterns of observed seasonal temperatures, with variations based 

primarily on the magnitude of temperature change. In some cases differences between 

models derive from the spatial resolution of the models, and treatment of topography 

within the models. For example, the HAD model produces notably cooler than observed 

November-March temperatures for the northern Rocky Mountains. HAD and NCAR 

simulated temperatures are warmer than observed during the spring and summer months, 

throughout most of the West. For November-March temperatures, with the exception of 

ECHAM5, all models show cooler than observed mean seasonal temperatures for 

southern New Mexico.  

 

Precipitation 

HAD shows the best match with the observed seasonal cycle of precipitation and 

associated spatial distribution of precipitation (Figure 4). Although HAD predictions for 

July and August total precipitation are 38.3% and 36.0% higher, respectively, than the 

observed, it is the only model considered here that does not drastically overestimate 



 17

Colorado Plateau winter season precipitation (Figure 4). The NCAR model depicts a 

Mediterranean climate seasonal cycle of precipitation for the Southern Colorado Plateau 

(SCP) region, whereas the CSIRO shows little variation in precipitation between months, 

in contrast to the observed bimodal season cycle. The CNRM, ECHAM5 and the 22-ME 

all show bimodal seasonal cycles, but overestimate November-March precipitation, as 

well as April and September precipitation. 

 

Like the 22-ME, most of the individual models considered here overestimate observed 

November-March precipitation by a factor of two (Table 2). Overestimation of winter 

precipitation in the U.S. West is a long-standing issue among GCMs (Coquard et al, 

2004), related in part to the complex topography of the region (Duffy et al., 2003). 

Average pre-monsoon arid foresummer season (May-June) precipitation was simulated 

well by most of the models considered here, with the notable exception of the CSIRO 

(and the CNRM for May) (Figure 4). The ECHAM5 and CNRM models closely matched 

the observed June annual precipitation minimum. The CNRM comes closest to 

simulating the observed monthly means for each summer month, although ECHAM5 

total summer precipitation is closest to observed (Table 2). The ECHAM5 and 22-ME 

underestimate observed July precipitation, and overestimate September precipitation. As 

mentioned above, the HAD model closely matches the observed seasonal cycle in 

summer, but it overestimates precipitation in July and August by more than 35% in each 

month.  
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Map comparisons of the geographic distribution of precipitation, as depicted by the 

GCMs and observations, are too numerous to show in this paper; we summarize 

comparisons for the SCP in Tables 3 and 4. We discuss the most salient aspects for the 

western U.S. and the SCP, below. In general, the GCMs preserve the spatial structure of 

seasonal precipitation across the West, showing Mediterranean climates for the coastal 

states, and monsoon moisture reaching eastern half of the West. Overall, they depict 

wetter than observed winter precipitation across the West, a somewhat drier than 

observed spring season across the Rockies and Plains states, and drier than observed 

summer precipitation, especially in the northern and western parts of the Four Corners 

states.  

 

For November-March precipitation, the most notable aspects are: NCAR, ECHAM5 and 

CSIRO depict much wetter than observed conditions throughout the West; the 22-ME 

and HAD are wetter than observed in the southern Plains; CNRM exaggerates winter 

wetness in the Southwest and HAD shows drier than observed winter precipitation in the 

west central Rocky Mountains. Overestimations of November-March precipitation were 

most obvious in New Mexico, where estimates were more than double the observed 

precipitation in all five models except HAD, and the northern Plains states. For May-June 

precipitation, most of the models did not capture the extent of spring moisture in the 

Plains states, especially in the southern Plains. The CSIRO model depicted a wetter than 

observed spring in the Southwest (especially New Mexico). For July-September 

precipitation, the NCAR depicted a western U.S. landscape much drier than observations, 

which is not surprising, given the Mediterranean seasonal cycle described by the model. 
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The HAD model depicted realistic spatial structure of Southwest summer precipitation, 

but underestimated the northern extent of summer precipitation. The CNRM, ECHAM5, 

CSIRO and 22-ME match the overall spatial structure of summer precipitation in the 

West, but they all show drier than observed conditions in the Southwest, especially in the 

western half of the Four Corners states. The 22-ME and CNRM estimate wetter than 

observed summer precipitation for the Upper Colorado River Basin.  

 

Table 3 presents a qualitative comparison of model estimates versus observed 

precipitation for the Southern Colorado Plateau (SCP). For November-March, most of the 

models overestimate SCP mean precipitation. The HAD and 22-ME produce wetter than 

observed conditions in the southeastern quadrant of the SCP. The CSIRO, ECHAM5, and 

NCAR models all exhibit wetter than observed winter precipitation, with the ECHAM5 

showing more than double the observed precipitation over most of the SCP domain. The 

CRNM CM3 simulates wetter than observed precipitation over the southern half of the 

SCP. 

 

For May-June, with the exception of the ECHAM5, all models and the 22-ME produce 

wetter than observed precipitation in the eastern half of the SCP. In particular, the CSIRO 

model produces well more than double the observed precipitation in the eastern half of 

the SCP. For July-September, the differences between models and observations are even 

more pronounced, with most models showing greater than observed precipitation in the 

eastern half of the SCP and less than observed precipitation in the western half of the 

SCP. Similar to the spring season, the CSIRO model produces double the observed 
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summer precipitation in the eastern half of the SCP; as mentioned above, the CSIRO 

model does not produce a strong seasonal cycle, and overestimates precipitation in every 

single month (Figure 4). The NCAR is drier than observed over the entire SCP domain.  

 

 

4. Results: Model projections for the Southern Colorado Plateau 

 

Projections for the SCP all show increasing temperatures after 1980 (Figure 5). When the 

22 model projections are averaged together (22-ME), the temperature increase appears to 

be nearly monotonic, reaching 2.2°C above the observed average in the 2030s, and 4.0°C 

above the observed average by the end of the century. Individual models exhibit 

considerable multi-year variability within the upward trends in temperature. With the 

exception of the CSIRO model, which projects considerably lower temperature increase 

of 2.3°C by the end of the century, individual models show increases comparable to the 

22-ME. HAD projects the greatest annual temperature increases, reaching 5.4°C above 

the observed average by 2080.  

 

Seasonal temperature projections (not shown) exhibit slightly higher rates of increase for 

the arid foresummer and summer seasons than for the cool season. The 22-ME projection 

for the SCP warm seasons reach 2.5°C above the observed average in the 2030s, and 

4.7°C higher than observed average values by the end of the century. November-March 

seasonal temperature projections reach 1.9°C above the observed average by 2040, and 

3.6°C above the average by the end of the century. In all seasons, the CSIRO shows 



 21

lower temperature increases than the other models. The HAD projects much higher 

winter temperature increases than the other models (6.0°C higher than average by the end 

of the century) and, probably due to its exceedingly high projection of July-September 

precipitation, less than 22-ME increases during the summer. The NCAR, which 

characterizes the SCP as having a Mediterranean seasonal precipitation cycle for 1950-

1999, projects the greatest summer season temperature increases (4.8°C by the end of the 

century). Timbal et al. (2008) found the CSIRO the least sensitive (2.11°C) and the 

ECHAM5 most sensitive (3.69°C) models when comparing the global temperature 

sensitivity of 10 AR4 GCMs modeling the A1B scenario for the twenty-first century. The 

HAD was not among the models tested, but similar to this study, CNRM temperature 

sensitivity was roughly in the middle (2.81°C).  

 

SCP precipitation projections show a wide range of possibilities, and few coherent trends. 

This is not surprising, and is consistent with the CCSP (2008a) and IPCC (2007) 

statements that AOGCMs are often not reliable for simulating sub-continental scale 

precipitation. The 22-ME projection suggests a slight decline (6.5%) in annual 

precipitation for the Colorado Plateau (Figure 6). Most of the GCMs we selected project 

annual precipitation below the observed 1950-1999 average for most of the 21st Century. 

Most models show decade-scale variations, with few pluvials of the magnitude seen 

during the 20th Century. HAD, however, projects higher than observed mean SCP 

precipitation for most of the 21st Century, due to several decade-scale winter pluvials, and 

an overall increase in summer precipitation, averaging 50% above observed, after 2040 

(Figures 6-9). SCP November-March precipitation projections indicate great variability 
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between models and no strong trends (Figure 7); the 22-ME projects a slight decline in 

winter precipitation of about 5% during the course of the century.  

 

SCP May-June precipitation projections agree on mostly below observed average 

precipitation during the course of the 21st Century, with some substantial differences in 

multi-decade variability and the magnitude of declining arid foresummer precipitation 

(Figure 8). In particular, the 22-ME declines throughout the century, averaging about 

75% of climatology during the last decades of the century. The CNRM projects the 

greatest decline in SCP May-June precipitation (47.8%, with an average of 50% lower 

than climatology for the last 3 decades of the century). The CSIRO projects consistently 

below average SCP May-June precipitation, reaching about 25% below climatology by 

the last few decades of the century (Figure 8). Though a small fraction of annual 

precipitation falls during the arid foresummer, temperatures during this time of year may 

be implicated in massive forest mortality (Breshears et al., 2005; Weiss et al., 2009 [in 

press]).    

 

SCP July-September precipitation projections also indicate great variability between 

models and no clear trends; the 22-ME projects a slight increase in summer precipitation 

during the course of the century, modulated by multi-decadal variability (Figure 9). The 

HAD model shows a clear and dramatic increase in SCP summer precipitation after 2020, 

with regional totals far in excess of observations. On the other hand, the ECHAM5 model 

projects mostly below observed average SCP summer precipitation during the 21st 

century. Summer season precipitation in the western U.S. is notoriously difficult to 
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predict. The IPCC (2007) indicates relatively low agreement for the SCP between 21 

GCMs used to project summer (June-August) precipitation in the West. A study by Lin et 

al. (2008) determined that most of the AR4 models overestimate precipitation in the core 

monsoon region and fail to show the monsoon retreat.   

 

In this study, the two top-ranking GCMs, based on their skill in simulating observed 

average precipitation in the West (Table 1), project radically different precipitation 

changes in the mid-century example considered; this is particularly the case for summer 

precipitation (Figure 10; Table 4). For mid-century July-September precipitation, the 

HAD projects a 30% increase for the Colorado Plateau area, whereas the ECHAM5 

projects a comparable decrease for the western three-fourths of the domain (Table 4). For 

May-June mid-century precipitation (Table 4), the two models show greater agreement 

with each other, with prominent drying in the western two-thirds of the domain. The two 

models project a slight increase in May-June precipitation for the eastern part of the SCP 

domain, in contrast to the 22-ME projection. For November-March mid-century 

projections, similarly, the two models show a slight increase in precipitation for much of 

the SCP, while the 22-model ensemble projects a slight decrease in the southern half of 

the SCP (Figure 11; Table 4).  

 

 

5. Discussion 

 

Model Selection and Vegetation Modeling 
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The fact that two GCMs included in this study captured the global extremes of 

temperature sensitivity as tested by Timbal et al. (2008) suggests that our model selection 

process succeeded in bracketing a range of temperature increases, which is important for 

modeling potential changes in vegetation distribution. In all seasonal precipitation 

projections, the ensemble projection falls about midway between the projections by the 

selected models, suggesting the five selected models are showing similar variability as 

the full set of 22 models. (N.B.: Results from a separate analysis, using the ensemble 

mean of the 5 highest ranking models [Table 1], do not differ dramatically from the major 

findings of the analysis presented herein). As with temperature sensitivity, the selected 

models span the full range of precipitation projections, which suits the goal of the 

selection process in capturing the range of possibilities for bracketing potential vegetation 

responses.  

 

Work by Seager et al. (2007) further indicates that the model selection process captured a 

substantial range of projections. Considering the Southwest quadrant of the United States, 

Seager and his colleagues modeled precipitation minus evaporation (P-E) using A1B 

emissions scenarios for 19 IPCC AR4 model projections. Mid-century (2041-2060) 

projections ranged from about -0.12 mm/day (CNRM) to no detectable change (CSIRO 

and HAD; Figure 2 of Seager et al., 2007). Overall, these results revealed a much more 

consistent projection for increased aridity than would be suggested by the precipitation 

projections alone, because models consistently projected increases in temperature. 

Although this study did not combine temperature and precipitation into an aridity value, 

vegetation modeling will integrate these two factors. The combination of increasing 
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temperatures without a substantial concomitant increase in precipitation affects P-E, 

which impacts soil moisture and vegetation dynamics (e.g., Breshears et al., 2005; Adams 

et al., 2009, Weiss et al., 2009 [in press]).   

 

Of the models selected for this analysis, the HAD presents some of the most intriguing 

possibilities for modeling future vegetation distribution. HAD ranked highest in closeness 

to observed precipitation seasonal cycle and spatial variation of precipitation (Table 1); 

however, HAD shows markedly warmer than observed summer temperatures and 

markedly cooler than observed winter temperatures. HAD A1B scenario projections for 

the SCP tend toward warmer and wetter in the winter season (Figure 4) and (relatively) 

cooler and wetter during the summer. Given the recent emphasis on drought, these 

scenarios have not been addressed much in the recent climate-vegetation analysis 

literature for the southwestern U.S. Paleoclimate and paleoecological studies may shed 

light on expectations for the kinds of changes projected by the HAD model. 

 

Implications for Climate Processes and Ecosystem Impacts 

Based on the results described above, the Southern Colorado Plateau annual temperatures 

are projected to increase by 1.5°-3.6°C by mid-century (22-ME = 2.9°C), and by 2.53°-

5.4°C by the end of the century (22-ME = 4.0°C), with annual temperatures exceeding 

the 1950-1999 range of variability by the 2030s. Annual precipitation changes are less 

clear. A conservative estimate, using a 22 model ensemble average, indicates that SCP 

annual precipitation may decrease by 6% by the end of the century. The clearest 

indication is that SCP May-June arid foresummer precipitation is likely to decline, by 11-
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45% (conservatively, 25%). The majority of 21st century precipitation variations do not 

consistently exceed the range of historic variability. 

 

The aforementioned results are consistent with IPCC AR4 projections, and with studies 

that have examined projections for northern California (Dettinger, 2006) and the Upper 

Colorado River Basin (Christensen and Lettenmaier, 2007). The hydroclimatic 

implications of increasing temperatures coupled with precipitation variability dominated 

by interannual and decadal change, but lacking trend, are well known. These include 

decreasing snowpack (Mote et al., 2005; Rauscher et al., 2008), early snowmelt (Stewart 

et al., 2004; 2005; 2009), and an increased fraction of liquid winter precipitation 

(Knowles et al., 2006), decreased runoff (Milly et al., 2005; Ellis et al., 2008), and 

increased evapotranspiration (Hamlet et al., 2007).  

 

The downscaling approach used in this study does not preserve within-month variability; 

consequently, ephemeral events such as flood-producing intense rains, frosts, extreme 

daily temperatures, and wilt-inducing hot, dry episodes are not captured. Studies by 

Diffenbaugh et al. (2005), using regional climate models, and Meehl et al. (2004) show 

that projected increases in mean temperature across North America are associated with 

the aforementioned phenomena – all of which have strong effects on vegetation. In 

particular, temperature-limited growth processes and the combination of increased 

temperatures and soil moisture deficits can affect widespread tree mortality and treeline 

conifer species distribution (e.g., Adams et al., 2009; van Mantgem et al., 2009; Schrag et 

al., 2008). Moreover, Weiss et al. (2009 [in press]) demonstrate that increased late spring 
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temperatures and drying, consistent facets of the projections used in this study, increase 

evapotranspirational demand and vegetation moisture stress. 

 

Yet, climate and ecological correlates of climate do not completely predict the present 

ranges and distributions of vegetation. Extreme climatic events, insects, diseases, soil 

processes, and large scale disturbance processes, such as fire, are examples of ecological 

limiters contributing to species mortality, recruitment, and distributions (Swetnam and 

Betancourt, 1998). Climate variability is dampened in the ensemble mean results, so the 

use of individual model projections allows a more realistic simulation of annual and 

multidecadal climate fluctuations for vegetation modeling. Variability influences many 

ecological processes that can affect species distribution, including seedling germination 

and survival, herbivore pressure, pollinator phenology, and wildfire frequency and extent.  

For example, dry wildfire seasons that follow relatively wet years can be associated with 

more area-burned than dry seasons following dry years in some cases (Swetnam and 

Betancourt, 1998). The next step we need to take in our modeling efforts is to incorporate 

key ecological limiters with climate limiters to provide more realistic species responses. 

 

 

6. Conclusions 

 

In this study, we statistically downscaled selected IPCC AR4 GCMs for the western 

United States. Our statistical downscaling method rapidly, and at little cost, provided 

simulations of future climate at a spatial scale acceptable for vegetation modeling. 
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Models were selected for their simulation of Southern Colorado Plateau climate, and for 

characteristics that would produce a range of future climatic conditions to drive 

vegetation change simulation models. Our evaluation of models, based on their 

simulation of the seasonal cycle of precipitation and spatial correlation between GCMs 

and observed precipitation, revealed that all models overestimate annual SCP 

precipitation, and that few models match the observed SCP seasonal cycle of 

precipitation. Models better estimated the seasonal cycle of SCP temperatures, but 

several models exhibited biases toward warmer than observed summer temperatures and 

cooler than observed winter temperatures. The HAD model displayed the closest match 

with historic precipitation observations, but some of the projections from HAD are 

beyond the edge of the envelope of projections of other models. Perhaps most important 

is that our analysis demonstrated that the models selected for vegetation analysis produce 

substantially greater variability than ensembles (an obvious result) and, in this case, a rich 

array of variability and potential future climates. 

 

The aforementioned biases in GCMs make choosing a “best model” based only on 

comparison with historic temperature and precipitation a dubious process. Even using a 

more comprehensive set of metrics can mute the differences between ensembles of 

models, and can, for a specific region, produce the correct answers for the wrong reasons 

(Brekke et al., 2008). Yet, using ensemble mean simulations removes the vulnerability 

needed for realistic vegetation change modeling. One prospect for future research is to 

use regional climate model simulations that dynamically downscale GCM projections to 

finer spatial scales. 
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Projections of future temperature and precipitation, based on individual models and a 22-

model ensemble mean, show excellent agreement with regard to SCP temperature 

increases; however, differences in magnitude between GCMs spanned more than 3°C in 

each season, and for annual temperature. For future precipitation, the most important 

result is that the selected models show a strong downward trend in May-June 

precipitation; in combination with increasing temperatures, lack of moisture during this 

time of year could increase the likelihood of massive forest mortality events, such as the 

die-off of Colorado Plateau conifers in the early part of the 21st century.  
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Figure Captions 
 
Figure 1. Western United States and Southern Colorado Plateau (shaded box) domains 
used in this study. 
 
Figure 2. Southern Colorado Plateau moisture balance. (A) Mean monthly temperature, 
precipitation, and potential evapotranspiration (PE) for 1950-1999. (B) Precipitation 
minus potential evapotranspiration. Potential evapotranspiration is calculated using 
Hamon’s method (Hamon, 1961). Data: PRISM 4 km (Daly et al., 1994); PE calculations 
provided by Andrew Ellis, Arizona State University. 
 
Figure 3. Southern Colorado Plateau observed (bars) and GCM simulated (lines) mean 
monthly temperature (°C), 1950-1999. See Table 1 for GCM acronyms. “Ens Avg” refers 
to the ensemble mean of 22 GCMs used in the IPCC Fourth Assessment Report data set 
(Meehl et al., 2007). Observed data: PRISM 4 km (Daly et al., 1994). 
 
Figure 4. Southern Colorado Plateau observed (bars) and GCM simulated (lines) mean 
monthly precipitation (mm), 1950-1999. See Table 1 for GCM acronyms. “Ens Avg” 
refers to the ensemble mean of 22 GCMs used in the IPCC Fourth Assessment Report 
data set (Meehl et al., 2007). Observed data: PRISM 4 km (Daly et al., 1994). 
 
Figure 5. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean 
annual temperature (°C). See Table 1 for GCM acronyms. “22-mdl Ensemble” refers to 
the ensemble mean of 22 GCMs used in the IPCC Fourth Assessment Report data set 
(Meehl et al., 2007). Observed data: PRISM 4 km (Daly et al., 1994). 
 
Figure 6. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean 
annual precipitation (mm). See Table 1 for GCM acronyms. “22-mdl Ensemble” refers to 
the ensemble mean of 22 GCMs used in the IPCC Fourth Assessment Report data set 
(Meehl et al., 2007). Observed data: PRISM 4 km (Daly et al., 1994). 
 
Figure 7. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean 
November-March total precipitation (mm). See Table 1 for GCM acronyms. “22-mdl 
Ensemble” refers to the ensemble mean of 22 GCMs used in the IPCC Fourth 
Assessment Report data set (Meehl et al., 2007). Observed data: PRISM 4 km (Daly et 
al., 1994). 
 
Figure 8. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean 
May-June total precipitation (mm). See Table 1 for GCM acronyms. “22-mdl Ensemble” 
refers to the ensemble mean of 22 GCMs used in the IPCC Fourth Assessment Report 
data set (Meehl et al., 2007). Observed data: PRISM 4 km (Daly et al., 1994). 
 
Figure 9. Southern Colorado Plateau observed (shaded) and GCM projected (lines) mean 
July-September total precipitation (mm). See Table 1 for GCM acronyms. “22-mdl 
Ensemble” refers to the ensemble mean of 22 GCMs used in the IPCC Fourth 
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Assessment Report data set (Meehl et al., 2007). Observed data: PRISM 4 km (Daly et 
al., 1994). 
 
Figure 10. Southern Colorado Plateau GCM projected mean July-September total 
precipitation (mm), 2050. Left: HAD; Center: ECHAM; Right: 22-Model ensemble. See 
Table 1 for GCM acronyms. Heavy black lines separate above and below 1950-1999 
mean; A = Above; B = Below. 
 
Figure 11. Southern Colorado Plateau GCM projected mean July-September total 
precipitation (mm), 2050. Left: HAD; Center: ECHAM; Right: 22-Model ensemble. See 
Table 1 for GCM acronyms. Heavy black lines separate above and below 1950-1999 
mean; A = Above; B = Below. 
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Table 1. GCM rankings for spatial correlation between GCM simulation and observed 
seasonal precipitation over land in the western United States, 1950-1999. Low rank 
indicates the best combined correlations with the annual cycle of precipitation. Bold font 
indicates GCM identifiers used in the text. 
 
GCM Modeling Center, Country Rank 
HADGEM1 Hadley Centre, UK 10 
ECHAM5/MPI Max Planck Institute, Germany 26 
ECHAM4/MPI Max Planck Institute, Germany 27 
CGCM3.1/T63 Canadian Centre for Climate Modelling & Analysis 29 
GFDL-CM2.1 NOAA Geophysical Fluid Dynamics Lab, US 35 
CGCM3.1/T47 Canadian Centre for Climate Modelling & Analysis 37 
GISS-EH NASA Goddard Institute for Space Studies, US 37 
HadCM3-UKMO Hadley Centre, UK 38 
MIROC3.2(medres) Center for Climate System Research (The 

University of Tokyo), National Institute for 
Environmental Studies, and Frontier Research 
Center for Global Change (JAMSTEC), Japan 

39 

CNRM CM3 Météo-France / Centre National de Recherches 
Météorologiques, France 

42 

CSIRO MK3.0 CSIRO, Australia 42 
MIROC 3.2(hires) Center for Climate System Research (The 

University of Tokyo), National Institute for 
Environmental Studies, and Frontier Research 
Center for Global Change (JAMSTEC), Japan 

44 

MIUB ECHO-G Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of KMA, and 
Model and Data group.  

50 

NCAR CCSM3 National Center for Atmospheric Research, US 50 
GISS-ER NASA Goddard Institute for Space Studies, US 53 
NCAR PCM1.0 National Center for Atmospheric Research, US 56 
BCCR BCM2.0 Bjerknes Centre for Climate Research, Norway 58 
GFDL-CM2.0 NOAA Geophysical Fluid Dynamics Lab, US 62 
GISS-AOM NASA Goddard Institute for Space Studies, US 63 
IAP-FGOALS Institute of Atmospheric Physics, People's Republc 

of China 
67 

ISPL-CM4 Institut Pierre Simon Laplace, France  71 
INM-CM3.0 Institute for Numerical Mathematics, Russia 76 
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Table 2. Observed and simulated temperature (top) and precipitation (bottom) for the 
three seasons analyzed in this study (November-March; May-June; July-September). See 
Table 1 for GCM acronyms. “22-ME” refers to the ensemble mean of 22 GCMs used in 
the IPCC Fourth Assessment Report data set (Meehl et al., 2007). Observed data: PRISM 
4 km (Daly et al., 1994). Temperature is in °C.  Precipitation is in mm. 
 
TEM PRISM CNRM  ECHAM5 NCAR CSIRO HAD 22-ME 
NOV-
MAR 

2.0 -0.3 1.8 -0.7 -0.5 -1.0 -0.3 

MAY-
JUN 

16.6 16.0 17.2 20.0 16.2 21.1 17.9 

JUL-
SEP 

20.4 21.5 21.2 23.9 20.7 24.6 22.1 

PRECIP PRISM CNRM  ECHAM5 NCAR CSIRO HAD 22-ME 
NOV-
MAR 131.5 197.9 306.2 285.5 267.3 128.8 263.4 
MAY-
JUN 27.9 50.7 31.3 40.8 99.8 50.2 63.4 
JUL-
SEP 108.5 123.8 107.3 45.2 156.8 138.4 103.6 
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Table 3. Qualitative assessment of GCM simulated precipitation compared to 
observations (1950-1999) for the Southern Colorado Plateau (SCP; see Figure 1). Each 
bold outlined box represents the SCP, and each quadrant of a bold outlined box 
represents one quadrant of the domain, corresponding to Figure 1 (clockwise from left, 
NW NE, SE, SW). Sign indicates the direction of projection, boldness indicates 
magnitude. + much greater than observed; + greater than observed; – less than observed; 
— much less than observed. Blanks indicate approximately similar total precipitation. 
 

Model Winter PPT 
(Nov-Mar) 

Spring PPT 
(May-Jun) 

Summer PPT 
(Jul-Sep) 

  + + – + 22-Model 
Ensemble  +  + – + 

   + – + 
UKMO-HADGEM1 

 +  + – + 
+    – + 

MPI-ECHAM5 
+ +   – + 
+ + + +  + 

CSIRO-MK3 
+ + + + – + 
   + – + 

CNRM-CM3 
+ +  + – + 
+ +  + – – 

NCAR-CCSM3 
+ +  + — – 
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Table 4. Qualitative assessment of precipitation projections for mid-century (2050) are 
compared to observations (1950-1999) for the Southern Colorado Plateau (SCP; see 
Figure 1). Each bold outlined box represents the SCP, and each quadrant of a bold 
outlined box represents one quadrant of the domain, corresponding to Figure 1 
(clockwise from left, NW NE, SE, SW). Sign indicates the direction of projection; 
boldness indicates the magnitude of the projection.  + large increase; + increase; – 
decrease; — large decrease.  
 

Model Winter PPT 
(Nov-Mar) 

Spring PPT 
(May-Jun) 

Summer PPT 
(Jul-Sep) 

+ + — – + + 22-Model 
Ensemble – – — – + + 

+ + – – + + 
UKMO-HADGEM1 

+ – – – + + 
+ + – – — – 

MPI-ECHAM5 
– – — – — – 

+ + – – – – 
CSIRO-MK3 

+ + — – – – 

– – — — + – 
CNRM-CM3 

– – — — + – 

– – — – + + 
NCAR-CCSM3 

– – – – + + 
 
 



 40

Figure 1 



 41

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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