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Abstract. This study assessed the relative contributions ofbecause uptake of lipophilic toxicants can occur from contam-
aqueous versus dietary uptake of three hydrophobic chemical®ated food as well as contaminated water, log, i€an affect
1,2,4-trichlorobenzene (1,2,4-TCB), 1,2,3,4,5-pentachlorobenthe relative role of dietary (biomagnification) versus aqueous
zene (PeCB), and 2,2,4,6,6-hexachlorobiphenyl (HCBP). (bioconcentration) uptake. Heath (1995) summarized our state
Juvenile rainbow trout@ncorhynchus mykiysvere exposed of knowledge on the bioaccumulation of hydrophobic chemi-
separately to chemically spiked water and food for 4 days andals in the following way. “Chemicals with a log.l§ < 3 are
12 days, respectively. Chemical concentrations were measuregainly taken up by gill; those with log k&, 3—6 are taken up
in the food, water, and tissues, and this allowed calculation oby both gill and gut; and those with a log,}{> 6 are probably
uptake rate constants ,(from water exposure, kfrom food  taken up entirely by gut uptake.” Since the transition from
exposure). The kvalues for the three test chemicals were predominantly aqueous to predominantly dietary uptake occurs
approximately five orders of magnitude greater than the k over a fairly broad range for log s, the purpose of the present
values. Using these measured uptake rate constants, a Simub’:mdy was to better define this transition point.
tion model was used to predict the relative aqueous versus There is strong evidence that dietary uptake is the major
dietary uptake when fish were exposed simultaneously to watapute for chemicals with a very high log K (Rudd 1964;
and food contaminated with these hydrophobic chemicals. Th&lonod and Keck 1982; Thomann and Connelly 1984; Matir
model predicted for all three test chemicals that the two uptakey), 1985: Crosslanét al. 1987; Gobast al. 1988; Batterman
routes would contribute equally to the chemical body burden inet a| 1989; Servost al. 1992). However, there are varying
fish whenever the food:water chemical concentration ratio Wagesults and conclusions regarding the |0(gv|ét which dietary
near 16 HoWeVer, USIng fOOdWater Chemlcal Concentratlon uptake predominates_ Wh||e some authors have Suggested that
gill uptake could account for over 98% of fish body burden fOf(ConneII 1990; Opperhuizen 1991), others have suggested that
both 1,2,4-TCB and PeCB uptake (log,fvalues of 3.98 and  aqueous uptake dominates when fish are given simultaneous
5.03, respectively). For HCBP (logk§ of 7.55), the model  4queous and dietary exposure (Fergusbal. 1967; Robinson
predicted that the dietary uptake could contribute over 85% of¢ 5 1967: Chadwick and Broocksen 1969: Reinert 1972
the body burden. Thus, depending on the actual food:watefaryinenet al. 1977: Fowler and Elder 1978: Tubg al. 1979;
chemica_ll concentration ratio, aqueous uptake via the gills cagnaw and Connell 1982; Leblanc 1995). Certainly, bioconcen-
predominate even when the chemicals have a lgg ¥alue  yat0n factors increase with log g values above 2 (Brugge-
greater than 5.0. In addition, we confirmed that dietary uptak§,an et al 1984: Oliver and Charlton 1984; Sabljic 1987:
of hydrophobic xenobiotics increases with increasing lgg.K Connell 1990: Hawker 1990: Randai al. 1990 Smithet al.
1990; Gobas 1990; Nenza 1991). Nevertheless, this relation-
ship breaks down when logJ; exceeds 6 (Gobas and Morri-
son 2000), indicating an increasing importance of dietary up-
Persistent lipophilic chemicals tend to bioaccumulate in fish tdake at very high log k,, values. Even so, Opperhuizen (1991)
a concentration greater than that in either the food or the watepredicted that uptake of hydrophobic chemicals by the gills and
Bioaccumulation can be directly affected by the octanol-wateigut were of equal importance because the efficiency of gill
partition coefficient (K,,) of the chemical in a number of ways. uptake of xenobiotics from the water and gut uptake from food
Foremost, high log K, chemicals bioaccumulate to a greater are both approximately 50% regardless gf Kalues (see also
degree than less lipophilic ones (Connell 1990). In additionNorstromet al. 1975; Jarvinen and Tyo 1978; Macek al.

1979).

Given the established practice of using log,kas a predic-

tive tool in environmental decision making, improved defini-

Correspondence toA. P. Farrell tion of the transition point between dietary and aqueous uptake
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can only assist in better predicting chemical body burdens o#nalysis. After removal, fish were killed by a sharp blow to the head
fish under field conditions. Therefore, we used separate labgnd immediately frozen at80°C. Storage was no longer than 1 month

ratory exposure experiments to derive uptake rate constants f@fior to chemical analysis.

aqueous and dietary exposures for three lipophilic chemicals ] B

with a range of log K, values from 3.98 to 7.55. The derived Dietary Exposures:A one-step food chain was used to facilitate the

uptake rate constants were then used in a mathematical moq%\faluation of biomagnification (Connell 1990). Analysis of the com-

. - . . " ercial fish food (Moore-Clark Co., Vancouver, BC) prior to use
to simulate field situation conditions (Gobas and Zhang 1992 onfirmed the absence of the test chemicals. Chemically spiked food

and predict the relationship bet\’\_’een the relative roles of d'etarV\/as prepared 1 week before the experiment using a household blender.
and aqueous uptake as a function of log,Kand at what log  Food was first minced in the blender and then softened by adding
Kow Value the transition occurred. water and mixing until wet to the touch. Test chemicals were dissolved
in methanol and mixed with the foodrfd h before making favorable-
sized food pellets using a 3/3Bamburger die. The food pellets were
dried in a fume hood. The concentration of the test chemicals in the
food was confirmed by chemical analysis as: 42.21.6 mg 1,2,4-
TCB/kg, 17.9= 0.5 mg PeCB/kg, and 24.3 0.1 mg HCBP/kg.
Exposure Protocols Seven 45-L glass aquaria were used to hold six groups of 10 fish and
one group of 4 fish. These aquaria received+13°C dechlorinated
water at a rate of 1.5 L/min that was aerated to maintain the oxygen
concentration> 8 mg/L. Fish were fed daily approximately 2% of
heir body mass. To minimize chemical contamination of the water by
he feces and food, the wastes on the bottom of the aquarium were
emoved twice daily using a siphon tube. In addition, the water was

Materials and Methods

Fish: Juvenile (2.5-3.5 g) rainbow troubfcorhynchus mykissvere

obtained from Westcreek Fish Farm in Langley, BC, and were held fo
at least 3 weeks in flow-through tanks (500 L) receiving dechlorinate
municipal water at a rate of 3 L/min. Continuous aeration achieved g

dissolved oxygen concentration of 8 mg/L at 12°C. Water pH was : . ; - '

- continuously filtered with an activated charcoal/foam filter (Aquaclear
6.1-6.3. Water hardness was 17.1 mg/L as Ca@@d alkalinity was Mini. Rolf C. H | M | h of the fi fth
17.1 mg/L as CaCQ The fish were fed daily with Clark’s dry ilml olf C. Hagen Inc., Montreal). On each ofthe first 6 days of the

truded fish feed until 2—4 d ior to th ) ts. The f eeding trial, the 10 fish in one aquarium were sampled for chemical
extruded Tish téed until 2-4 days prior 1o theé experiments. The 100 nalysis. On the 12th day, the last four fish were sampled. Fish were
ingredients included fishmeal, canola meal, fish oil, whole wheat,

- L killed by a sharp blow to the head and immediately frozer-80°C.
feather meal, can molasses, ethoxyquin, and vitamins. Total crud

) . . t | than 1 th prior to chemical lysis.
protein was 47%, total fat 14%, crude fiber was 2.5%, calcium actuas orage was no fonger than L month prior fo chemical analysis
2.0%, phosphorus actual 1.5%, vitamin A 25,000 IU/kg, vitamin D

2,400 IU/kg, and vitamin E 125 IU/kg. . .
Chemical Analysis

Chemicals: The chemicals to which the fish were exposed were 1,2,4-
trichlorobenzene (1,2,4-TCB, Aldrich Chemical Co.; 99%), 1,2,3,4,5-Chemical Extraction from Water Sample€hemicals were extracted
pentachlorobenzene (PeCB, Aldrich; 98%) and’'2,2,6,6-hexa-  from water samples with a solid reverse-phase method that used either
chlorobiphenyl (HCBP, AccuStandard; 100%). 1,3,5-Trichlorobenzenean octadecyl (&) (a nonpolar sorbent 18 carbon straight-chain hy
(1,3,5-TCB, Aldrich; 99%), 1,2,3,4,5,6-hexachlorobenzene (HCB, Al-drocarbon) Bond Elute cartridge (Varian Co.) ofgEmporeTM disk
drich; 99%) and 2,25,5-tetrachlorobiphenyl (TCBP, AccuStandard; (J.T. Baker), depending on sample volume. Both were preconditioned
100%) were used as internal standards for chemical extraction andith methanol. The chemicals were then eluted with hexane, as de-
clean-up in quantifying the loss of the test chemicals during chemicakcribed in detail by Blevinst al. (1993). The extracts were cleaned up
analysis. 1,2,4,5-Tetrachlorobenzene (TeCB, Aldrich; 99%) was usetiefore GC analysis.
as the “internal standard” for gas chromatographic analysis. Some of
the physical properties of these chemicals are listed in Table 1. Th€hemical Extraction from Food and Tissue Sampl€&emicals were
concentrations of the test chemicals in water and food were more thagxtracted from subsamples of fish tissue (0.5 g) and food (0.2 g). Fish
100 times lower than the 96-h Lsgvalue. were thawed immediately prior to tissue analysis, and the body surface
was washed gently with distilled water and blotted dry. The fish was
Aqueous ExposuresAqueous stock solutions were prepared immedi- weighed, and then about 0.5 g skeletal muscle, including skin, was
ately before use and contained a mixture of 9251,2,4-TCB/L, 205  removed, minced, and homogenized in a 15-ml hand-held homoge-
ng PeCB/L, and 20§.g HCBP/L. The chemicals were first dissolved nizer (Pyrex Co., England) using 2 ml acid buffer solution and 0.5 ml
individually in methanol. The exposure apparatus was a 65-L aquaref the surrogate chemicals. The homogenate was then transferred to a
ium, and this was primed by stirring in 130 ml of the stock solution at 15-ml centrifuge tube with a screw cap containing 5 ml hexane and
the start of the experiment, resulting in nominal concentrations of 1.85-5 ml buffer solution. The homogenate was centrifuged,&800g
ng 1,2,4-TCBIL, 0.41ug PeCBI/L, and 0.42.g HCBP/L. Thereafter, for 10 min afte 4 h of shaking (American Optical Co., Richmond,
the aquarium water was partially replaced every hour with a computerCA). The supernatant was collected and the procedure was repeated
controlled pump and solenoid to control the delivery of the stockwith another 5 ml of hexane. The supernatants were pooled and
solution and the aerated dilution water (see Webdl. 1996 for full cleaned up before GC analysis.
details of the exposure apparatus). Every hour chemical stock was
delivered to the test aquarium at a rate of 5 ml/min for 1.2 min, andClean-up: Water, tissue, and food extracts were cleaned up before GC
water was delivered at the rate of 1 L/min for 3 min, for a water analysis by transferring them into a 15-cm glass clean-up column. The
turnover time of 22 h. A second, control aquarium was set up in thecolumn contained (from bottom to top): a bead (#3000, Fisher Scien-
same manner but receiving water containing 2 ml/L methanol. Watetific); silica gel 40 (Kieselgel 40, Merck, 0.078 g); silica gel 60-200
temperature was 13 1°C and oxygen concentration was 8 mg (Mallinckrodt SilicRA, 0.2 g); a mixture of silica gel 60—200 and
O,/L. sulfuric acid (Fisher Scientific) with a ratio of 60:40 (0.2 g); and
Forty-eight fish (weighing 2.6 0.3 g) were placed in both aquaria. anhydrous sodium sulfate (0.3 g, Caledon). The column was pre-
Water samples (50 to 500 ml) and fish samples (eight fish each timey)ashed with hexane before clean-up. After the extracts had passed
were then taken periodically (1, 4, 8, 12, 48, and 96 h) for chemicalthrough the column, 5 ml of hexane was used to elute the column. The
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Table 1. The physical-chemical properties of the test chemicals, surrogate chemicals, and the internal standard chemicals and the acute toxi
ity of the test chemicals

Molecular Water Solubility Vapor Pressure 96-h LG5
Weight log Ky (mg/L) (Pa) (mg/L) Test Species
Bluegill
1,2,4-TCB 181.45 3.98 46.08 60.6° 3.36-21.4 Fathead minnow
Bluegill
PeCB 250.3 5.08 0.83 0.21¢ 0.25-0.83 Fathead minnow
HCBP 360.9 7.5% 0.0004% 0.017 61" Cutthroat trout
Yellow perch
1,3,5-TCB 181.45 4.49 4.12 7
1,2,4,5-TeCB 215.89 4.02 2.35" 0.64
HCB 284.8 5.47 0.047 0.001%
TCBP 292 6.10 0.027 0.0031

aMiller and Wasik (1985).

b Mackay and Shiu (1981).

¢ Shiu and Mackay (1986).

4 Miller et al. (1984).

¢Mackayet al. (1982).

fMackayet al. (1985).

9US EPA (1980).

hUS Dept. of Interior/Fish and Wildlife Service (1986).

elutate was concentrated to 1.5 ml with, Mt room temperature. k., andk, are elimination rate constants (1/day) of the chemical via

Internal standard (0.5 ml) was added to the extracts immediatelyhe gills, feces, metabolic transformation, and growth dilution, respec-

before GC analysis. tively. While k, incorporates processes such as gill ventilation, trans
port in blood, membrane transfer, and internal distributiqpincor-

GC Analysis:The extracts were analyzed by gas chromatographyporates processes such as ingestion rate, gut wall permeation,

(GC), using surrogate and internal standard chemicals for calibratiorassimilation efficiency, and internal transport via the blood (Landrum

Surrogate chemicals were added into the sample at the start of thet al. 1994; Gobas and Morrison 2000). Because the chemical body

extraction procedure and the internal standard was injected at leapurden in a fish under field conditions is the result of both dietary and

once into the GC before sample analysis. GC analysis was carried ogiqueous uptake, the relative contribution of aqueous and diet uptake

on a Varian model 3500, equipped with a 30-m DB-1 capillary columncan be assessed as:

(J&W Scientific, Fulsome CA) an®Ni electron capture detector. The

injector temperature was 250°C, and the detector temperature was

300°C. The column temperature was programmed to increase from Ugits + Ugi = (K * Cp) + (Kg* Co) (Eq. 2)

100 to 300°C in 24.5 min. The carrier gas was ultrapure, high-grade

helium delivered at 1.5 ml/min, and the split ratio was 64:1. The

injection mode was splitless, with an injection volume qtl1In this whereU ;s andUg, (ng/day) are the uptake rates of chemical in the

study, duplicate injections of each sample were used for each analysifish via the gills and gastrointestinal (Gl) tract, respectively.

The mean of these values represented one value for each tissue, food;To solve these equations, the uptake rate constants were determined

or water sample. GC retention times were 3.70 min for 1,3,5-TCB,in the laboratory experiments. The advantage of performing kinetic

4.17 min for 1,2,4-TCB, 6.02 min for 1,2,4,5-TeCB, 8.44 min for experiments is that once measured, the rate constants can be used to

PeCB, 10.77 min for HCB, 13.2 min for TCBP, and 14.90 min for estimate the relative roles of dietary and aqueous uptake as long as the

HCBP. The chemical recovery was estimated from the surrogates angctual concentrations in the water and the food are known. This also

internal standards and the following values were used: 94% to 96% fopeans that the exposure concentrations used in this study did not have
TCB and 98% to 101% for PeCB and HCBP. The precision had morgg match those in the actual environment.
than a 98% confidence limit.

Derivation of Uptake Rate Constant&lptake constants were derived
Modeling Theory from observed concentrations by applying the BIOFIT model (Gobas

and Zhang 1992), which is particularly useful in reducing the margin
A mathematical description of the uptake and elimination of chemical<f €rror when deriving uptake rate constants when exposure is short
in fish is given by the following model (Gobas 1993): anq water conce_ntratlons vary over tlme_ d_unn_g the exposure period.

This method derives uptake and total elimination rate constasets (

dCs + dt = Cy-ky + Cy- kg — Crv (ky + ke + kn+ k9 (EQ. 1) the combined sum ol_(z, k_e, Ky, andkg) by fitting Equation_ 1to o

observed water and fish tissue concentrations. If the chemical elimi-
whereCr (ng/kg fish),C,, (g/L water), andC, (.g/kg diet) are the  nation rate (in g/day) from the fish is insignificant compared to the
chemical concentrations in fish, the freely dissolved concentration iruptake rate (in g/day) and it takes a long time to achieve steady-
the water, and the concentration in the diet, respectivgly[L/(kg state—as is typically the case at the beginning of the uptake experi-
fish - day)] andky [(kg diet)/(kg fish- day)] are the uptake rate ment with high K, chemicals—the fitting methodology has insuffi
constants (also sometimes referred to as uptake clearance constantgnt information to derive the elimination rate constant. In those
for chemical uptake via the gills and from the diet, respectivielyk,, cases, only uptake rate constants can be derived.
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Results The model predicted that at a food:water concentrat@y (
C,) ratio of around 18 chemical uptake via the gills and the
Gl tract would contribute almost equally to the chemical body
burden. If the food:water concentration ratio wasl(’, then
dietary uptake would account for nearly 100% of chemical

Chemical dosing was continuous during.the entire aquUeOoUR hiake. Conversely, if the food:water concentration ratio
exposure experiment. Nevertheless, chemical concentrations Mﬁts< 10%, then gill uptake would account for virtually 100%
water decreased sharply during the first 12 h (Figure 1) partl;bf the uptéke

Slue to f|§hdu||ﬁ_)ttt‘|31ke. After 12 h, the measured water concentra- Using an illustrative scenario where water and dietary con-
lons varied fittie. centrations are assumed to be at a chemical equilibrium, we

Chemical body burdens resulting from the aqueous exposur: timat t ilibri ti L
are shown in Figure 2. The body burden of 1,2,4-TCB in Estimated at an equilibrium, we estimaeg/C,, as Koy, * Lq

. . . “for the three chemicals, whets is the lipid content of the diet
creased rapidly during the first 24 h to about 269kg. The .\ 316 of 20 lipid was usednaere). T@g:C,, ratios were 191

accumula_ltion rate of 1,2,4-TCB then slowed, and the bod e, 109 for 1,2,4-TCB, 2,350i(e., 10>3) for PeCB, and
burden did not change significantly thereafter. The concentraz4 5 ooo (e., 109 for HCBP. Substituting thesg,:C,, ratios
’ ¢Sy . d-~w

tion of PeCB increased rapidly but did not reach steady-stat?mo the model (Figure 4), gill uptake was predicted to account

during the exposure period. Bioconcentration of HCBP was . v er 989 of fish body burden of both 1,2,4-TCB and PeCB
s]owerthan that of PeQB even thqugh the.exposure concentr%-ptake_ In contrast, the GI tract was predicted to contribute
tions for the two chemicals were similar (Figure 2). In fact, theOver 85% of body burden of HCBP

body burden of HCBP was more than three times lower than
that for PeCB for both the 24-h and 96-h samples (Figure 1).
Test chemicals were not detected in muscle samples taken from

control fish. Discussion

Aqueous Exposure

The present study confirmed that dietary uptake of hydrophobic
xenobiotics increases in importance directly with log,KIn
) ) ] addition, we established that aqueous uptake was the predom-
Chemical body burdens resulting from dietary exposure argnant (98%) contributor to body burden for a lipophilic chem-
shown in Figure 3. Bioaccumulation of 1,2,4-TCB occurredica| with a log K, value of 5.05 and remained an important
dyrlng the first 5.da.¥s of feeding, but thereafter body burdengntributor (15%) for a lipophilic chemical with a log,[ of
did not change significantly. Uptake of PeCB and HCBP dur-7 55 The implication of our findings relative to Heath’s (1995)
ing the first 2 days was initially slower than that of 1,2,4-TCB gyggestion that the transition between aqueous and dietary
(Figure 3). Concentrations of PeCB and HCBP in the fishyptake as the main contributor to lipophilic chemical uptake
increased with time in a near linear fashion. occurred at log K, between 3.0 and 6.0 is that the transition
may be closer to log K, 6 than previously thought.
Our findings do not agree with Opperhuizen (1991), who
Uptake Rate Constants predicted that the gills and Gl tract were of equal importance
for the uptake of hydrophobic chemicals. We agree with Op-
The uptake rate constants for aqueous and dietary exposures g@i€rhiuzen that gill uptake is important at high Kvalues, but
presented in Table 2. The values were about five orders of we found a clear transition to dietary uptake at a lqg, Kalue
magnitude greater than thgvalues. Surprisingly, thie,/ky ratios  somewhere between 5.0 and 7.5 for gC,, ratios that we
were similar for 1,2,4-TCB and HCBP. PeCB showed the highesinodeled.
ky/ky ratio among the three test chemicals (Table 2). We are not alone in our suggestion that aqueous uptake in
fish can predominate for certain hydrophobic chemicals with a
log K, value close to 6.0. Support is provided by earlier
Aqueous versus Dietary Chemical Uptake studies that directly compared fish given only an aqueous
exposure with fish given an aqueous plus dietary exposure.
To evaluate the relative contributions of aqueous and dietarjiowever, these earlier studies usually studied only one chem-
uptake to chemical body burden, Equation 2 was used to modeliaal rather than comparing several chemicals with differing
simultaneous chemical exposure via water and food. This moddiydrophobicity, as we did here. For example, Chadwick and
incorporated the measur&gandk, values and a wide range L0 Broocksen (1969) found that a 3-week aqueous plus dietary
to 10) for the food:water chemical concentration ratios. Theexposure to dieldrin (log K, 5.4) resulted in a similar dieldrin
results of the simulation model are shown in Figure 4. The fractiorbody burden as compared with agueous exposure alone, sug-

Dietary Exposure

of chemical uptake from water was calculated as gesting a minor role for dietary uptake. Furthermore, bioaccu-
mulation studies with dieldrin in guppies (Reinert 1972) and
ki-C, =+ (ki- C, + kg Cyo) (Eq.3)  with DDT in fathead minnows (log K, 6.0) (Jarvineret al.

1977) suggested that chemical body burden after aqueous ex-
whereas the fraction of chemical taken up from food wasposure was greater than that after food exposure. In fact, the
calculated as daphnia used to feed the guppies had accumulated dieldrin,

presumably through bioconcentration, to a greater degree than

Kg* Cq+ (ki Cy + Ky Co) (Ea.4)  the guppies (Reinert 1972). Also, there was no effect on the
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(]
§ 4.0- =——f— Measured 1,2,4-TCB
c ' -T —O— Measured PeCB
e 35 ——#r— Measured HCBP
-g 3-0: 1,2,4- TCB — == = Expected concentration
o 2.5+ Fig. 1. Measured water concentrations of
t i "~ 1,2,4-TCB, PeCB, and HCBP during aqueous
QB 201 - e e e — e —— exposure of juvenile rainbow troutOf-
g = 7 corhynchus myki3s Each point represents
(o} 1.57 water concentration when fish was sampled.
(3] - .
— 1.0- Each point represents the average of two wa-
8 . ter samples
g 0.57
-~ 0
O
Hours
500 - ——12,4-TCB *

400

Fig. 2. Measured concentrations  of
1,2,4-TCB, PeCB, and HCBP in juvenile
rainbow trout Oncorhynchus mykiysnuscle
samples during a 4-day aqueous exposure ex-
periment. Each point is the mean of eight fish.
*denotes a significant difference @ 0.05)
between the 24- and 96-h values

300

200

Chemical concentration in fish muscle
ug’kg

Hours post exposure to contaminated water

DDT body burden when the contaminated food ration wasof a transition point near to log J§, 6.0 may have application
doubled (Jarvineret al. 1977). Other studies have come to a beyond the three chemicals that were studied.

similar conclusion about the importance of aqueous uptake by Given the large differences ky andky for the three hydro
taking advantage of the fact that marine fish drink 5-12% ofphobic chemicals we studied, it is only when i8g C,, ratio

their body weight daily whereas freshwater fish do not drinkbecomes very large that dietary uptake can predominate. Ser-
water (Murty 1986). Unfed Atlantic salmon exposed™f&- vos et al. (1992) suggested that dietary contribution to body
2,2,4,5,58-pentachlorobiphenyl (log K, 5.92) in fresh water burden of polychlorinated dibenzo-p-dioxins (PCDDSs) in-
had a higher chemical body burden compared with a sea watereased when water chemical concentrations declined to ex-
exposure under otherwise identical conditions (Telp al. tremely low levels. Similarly, previous studies have stressed
1979). When Ferguson and Goodyear (1967) compared endrihat low freely dissolved concentrations of highly hydrophobic
(50 pl/L, log K, = 4.53) uptake in black bullheads with and chemicalsice., log K,,, > 6) precluded appreciable gill expo
without their esophagus tied off (to prevent any exposure of thesure and uptake (Thomann and Connelly 1984; Matiral.

Gl tract), there was no difference in mortality rates. This result1985). In addition, Battermamt al (1989) suggested that
implied that gill uptake of endrin, in the absence of gut uptake bioaccumulation of 2,3,7,8-TCDD (tetrachlorodibenzo-p-di-
was equally effective at killing the fish. Given this concurrenceoxin, log K,,, 6.6—7.0) in lake trout occurred primarily through
for a variety of chemicals, it is possible that the present findingfood chain transfer because the water chemical concentration
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Fig. 3. Measured concentrations of 1,2,4-
TCB, PeCB and HCBP in juvenile rainbow
trout (Oncorhynchus mykiysnuscle samples

during a 12-day feeding experiment. Each

Chemical concentration in fish muscle

é’ point is the mean of 10 fish, except for day 12
2 where n= 4 fish. *denotes a significant dif-
ference (p< 0.05) between the values for 5
days and 12 days
Days post exposure to contaminated food
Table 2. Uptake constantskq andkg) for juvenile rainbow trout chemical concentrations decreased appreciably during the first

(Oncorhynchus mykissFish were exposed separately to water and 12 h of exposure even though there was intermittent chemical
food containing the three hydrophobic chemicals, 1,2,4-TCB, PeCB,dosing and the stock solution was replaced daily. Several

and HCBP factors probably contributed to these losses. Rapid chemical
1,2,4-TCB PeCB HCBP absorption by the fish and adsorption of chemicals to aquarium
walls likely predominated. In the case of TCB, volatilization
k; (L/kg/day) 258 1360 257 probably contributed to the loss.
Ed/(kkg/kg/day) 03 47%‘0028 104 2§5'0070 08 84?60026 In the present studyk, values ranged from 257 to 1,360
1rd i ’ ’ L/kg - day, andk, values ranged from 0.0026 to 0.0070 kg/kg

day. A difference of five orders of magnitude betwégrand
ky values is consistent with previous studies of hydrophobic

was five to seven orders of magnitude lower than that in th&hemicals. Reporte#; values range from oto 1C° L/kg -
diet. Even so, our model predicted that aqueous uptake woulfy, Whileky values are mostly less than 1.0 kgAdgy (Lieb
still contribute significantly at a log &, value as high as 7.55. @nd Bills 1974; Macelet al 1979; Bruggemaret al 1981;
This may be explained by the fact that factors other tharpkaaretal 1981). For several classes of chlorinated hydrocar-
extremely low water solubility (which produces a very high Pons. k, values were between 100 and 10,000 Lkgday,
C4:C,, ratio) contribute to this transition. whereasky values were between 0.004 and 0.016 kg/kigy
There are two ways to experimentally assess the relativéOPperhuizen and Sijim 1990; Opperhuizen 1991).
contributions of aqueous and dietary uptake of hydrophobic The expectation was that tie for HCBP would be signif
chemicals to fish body burden. One is to experimentally varycantly greater than that for 1,2,4-TCB and PeCB. This was not
exposure concentration at the gills and at the Gl tract and thel{1€ case. A possible reason for this might be that the measured
measure the resulting changes in body burden. This approach i#CBP water concentration was near to its water solubility limit
labor intensive and costly. The alternative is to meaky@nd (0.4 pg/L) for the majority of the experiment and slightly
ky and then model the exposure concentrations using thedgigher than the solubility limit at least for the first hour of
values, as we did here. For such a model and a given set gxposure. Thus, it is possible that HCBP was not fully dis-
uptake constants, the relative contributions of the two uptak&olved,i.e., the HCBP concentration we measured was greater
routes will be determined primarily by th@,:C,, ratio. This  than the actual dissolved concentration. If this were the case,
ratio will undoubtedly vary from situation to situation and we would have underestimatéd. What then follows is that
between fish species. Therefore, the values we used here ftite log K, for the transition from aqueous to dietary uptake
C4:C,, ratio may not apply to all natural situations. Nonethe would have been higher than our model predicted. Other re-
less, other researchers could use louandk, values to make searchers have used generator columns (Bruggeebaal
predictions for their situation if they know the,:C,, ratio. It ~ 1981; Opperhuizen and Stokkel 1988; Golesal 1989) to
is also important to note that becausgis inherently much limit the formation of crystals in water. Even so, Opperhuizen
greater thark,, the initial component of the chemical body (1991) and Gobast al. (1989) found that some chlorinated
burden of fish entering a contaminated water supply for the firsthemicals with a log K, > 7 had lower BCF values than
time will result largely from aqueous uptake despite a highchemicals with a lower log k.
C4:C,, ratio. For the present simulation model, dietary lipid content was
For the aqueous exposure experiment, measured watassumed to be 2%, a value probably close to a field situation.
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However, a dietary lipid content of 14% was used to facilitatewith increasing K, would have been more abrupt than pre
chemical dosing while measurirg. In theory, differences in  dicted.

food lipid content could affect dietary uptake. However, in  The body burden of 1,2,4-TCB reached a plateau with both
practice this does not appear to a large effect. The influence afietary and agueous exposure experiments. A reasonable ex-
dietary fat on dietary uptake efficiency was examined forplanation for these results is that the uptake and the loss
chemicals with a log K, of 4.51-6.10 and was found to be the (metabolism and excretion) of 1,2,4-TCB reached a balance
same for high (13.5%) and low<0.2%) fat food (Gobast al. after 1 day of exposure. Fast elimination of 1,2,4-TCB through
1993). However, dietary uptake efficiency was 30—50% highemetabolism was suggested as an important factor in other
for low fat food with chemicals having a very high log, )  studies, including one of our earlier studies (Qiao and Farrell
(6.3—8.0). Therefore, our simulation model could have under1996). In fact, 1,2,4-TCB has a half-life of 1 to 3 days in
estimated the dietary contribution to HCBP uptake to a similabluegill sunfish and American flagfish (Barrowes al. 1980;
degree. If this were the case, then (a) the modeled contributioBmith et al. 1990) and is rapidly metabolized by rats and
of aqueous uptake would have been lower than predicted fomonkeys (Lingget al. 1982). We did preliminary tests on a
HCBP, and (b) the transition from aqueous to dietary uptakesubstitute chemical, 1,5-dichloro-2, 4-dinitrobenzene (lgg K
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value 2.5), which is “not dissociated or metabolized” in the Gobas FAPC, Morrison HA (2000). Bioconcentration and bioaccumu-
environment (Newman 1993, personal communication). How- lation in the aquatic environmenh Boethling R, Mackay D (eds)
ever, its higher toxicity to fish and its lower sensitivity to GC ~ Handbook for environmental properties. CRC Press, Boca Raton,
analysis precluded further use. FL (in press) , ,

In summary, we examined the relative importance of aqueS°Pas dFAPC’ Zhang X (f1922) I_vle?_suremer_\t bloconcentratlgn facto(;_s
ous and dietary uptake routes for hydrophobic chemicals by and rate constants of chemical In aquatic organisms under condi-

. . . tions of variable water concentrations and short exposure time.

measuring, andky, and then modeling uptake as a function of Chemosphere 25:1961-1971
the chemical concentratlon rat_lo between food and water. Thg, ..« FAPC, Muir DCG, Mackay D (1988) Dynamics of dietary
k, values were considerably higher than #evalues. For the

) X bioaccumulation and faecal elimination of hydrophobic organic
Cq4:Cy, ratios that we modeled for simultaneous aqueous and  chemicals in fish. Chemosphere 17:943-962

dietary exposure, aqueous uptake via the gills predominated &@obas FAPC, Clark KE, Shu WY, Mackay D (1989) Bioconcentration
log K, values up to 5.05. However, dietary uptake via the GI  of polybrominated benzenes and biphenyls and related superhy-
tract predominated at a log K value of 7.5, with a small drophobic chemicals in fish: role of bioavailability and elimina-
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