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PREFACE 

EPA’s mission is to protect human health and the environment. EPA’s IRIS program 
contributes to this mission by developing information on how chemicals in the environment can 
affect human health. Scientific input and peer review of IRIS assessments ensure that national 
efforts to reduce human health risks can be based on the best available scientific information. The 
IRIS program engages the public in this work so that all parts of society – individuals, communities, 
businesses, the scientific community, and government agencies – have access to authoritative 
scientific information and can effectively participate in discussions involving risks to human health. 

In this document the IRIS program is releasing information on the scope of its upcoming 
assessment of polychlorinated biphenyls and is inviting the public to participate in the problem 
formulation by identifying the key issues and scientific information available for the assessment. 
The National Research Council’s Review of EPA’s IRIS Process (NRC, 2014) discussed scoping and 
problem formulation as these activities apply specifically to IRIS assessments.  IRIS assessments 
critically review the scientific literature to identify potential human health hazards of chemicals in 
the environment and to characterize exposure-response relationships.  Accordingly, the NRC 
discussed scoping and problem formulation for IRIS assessments as covering the scientific 
questions that pertain only to hazard identification and dose-response assessment.  Exposure 
assessment and risk characterization (the other components of a risk assessment) are outside the 
scope of IRIS assessments, as are the legal, political, social, economic, and technical aspects of risk 
management. 

During scoping, the IRIS program seeks input from EPA’s program and regional offices to 
identify the information and level of detail needed to inform their decisions.  This includes the 
exposure pathways and exposed groups that the assessment will consider.  The NRC’s Review of 
EPA’s IRIS Process characterized this practice as consistent with its risk-assessment guidance in 
Science and Decisions (NRC, 2009). 

During problem formulation, the IRIS program seeks input from the scientific community 
and the general public as it frames the scientific questions that will be the focus of systematic 
reviews in the upcoming assessment.  The NRC’s Review of EPA’s IRIS Process identified the major 
challenge of problem formulation as determining which adverse outcomes are of concern.  The NRC 
suggested a three-step process for conducting problem formulation for IRIS assessments: (1) a 
literature survey to identify the possible health outcomes associated with the chemical, (2) 
construction of a table to guide the formulation of questions that will be the subject of systematic 
reviews, and (3) examination of this table to determine which health outcomes warrant a 
systematic review.  In addition to identifying health outcomes for systematic review, the problem 
formulation section discusses key issues that the assessment will address. 
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This document begins with brief background information on PCBs, continues with the scope 
of the upcoming assessment and the three problem-formulation steps that the NRC suggested, and 
concludes with a preliminary discussion of key issues. Portions of this document were adapted 
from the Toxicological Profile for Polychlorinated Biphenyls (PCBs) (ATSDR, 2011, 2000) under a 
Memorandum of Understanding with the Agency for Toxic Substances and Disease Registry 
(ATSDR) entered into as part of a collaborative effort in the development of human health 
toxicological assessments for the purposes of making more efficient use of available resources and 
to share scientific information. 

Early public involvement should increase the scientific quality and transparency of IRIS 
assessments. Accordingly, the IRIS program is releasing this document in anticipation of a public 
science meeting focused on identifying the key issues and scientific information available for this 
upcoming assessment.  The IRIS program encourages the scientific community and the general 
public to contribute to this problem formulation. 
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1.1. Production and Use 
Polychlorinated biphenyls (PCBs) are a class of synthetic compounds characterized by a biphenyl 

structure with chlorine substitutions at up to ten positions, as shown in Figure 1-1.  There are a total of 
209 possible PCB congeners, based on the various combinations of the numbers and positions of the 
chlorine substitutions on the biphenyl molecule.  PCBs were manufactured and marketed in the United 
States between about 1930 and 1977 under the trade name Aroclor (e.g., Aroclors 1016, 1242, 1248, 
1254, 1260).  It has been estimated that more than 600 million kg of PCBs were commercially produced 
in the United States, and that worldwide production of PCBs was approximately twice that quantity 
(HSDB, 2011).  PCBs were used in many industrial applications because of their electrical insulating 
properties, chemical stability, and relative inflammability.  They were widely used in capacitors, 
transformers, and other electrical equipment, and as coolants and lubricants.  Other applications included 
use in plasticizers, surface coatings, inks, adhesives, flame retardants, pesticide extenders, paints, 
carbonless duplicating paper, and sealants and caulking compounds (ATSDR, 2000).  EPA issued final 
regulations banning the manufacture of PCBs and phasing out most PCB uses in 1979 under the Toxic 
Substances Control Act (TSCA) (40 CFR 761) due to evidence that they persist and accumulate in the 
environment, and can cause toxic effects (http://www2.epa.gov/aboutepa/epa-bans-pcb-manufacture-
phases-out-uses). Despite the ban on manufacturing, PCBs continue to be present in environmental media 
(e.g., air, soil, sediment, food) and are redistributed from one environmental compartment to another 
(ATSDR, 2000).  They can also be released through the continued use and disposal of PCB-containing 
products.   PCB-containing building materials such as window glazes, fluorescent light ballasts, ceiling 
tile coatings, caulk, paints and floor finishes are potential sources of PCBs in the indoor environment 
(Lehmann et al., 2015). 

 

  
 

X = 1 to 5, Y = 1 to 5 

Figure 1.  Chemical structure of PCBs (ATSDR, 2000) 

1.2. Environmental Fate 
PCBs are persistent and bioaccumulative.  They adsorb readily to organic materials such as 

sediments and soils, with adsorption increasing with the chlorine content of the mixture and the organic 
content of the environmental media (ATSDR, 2000).  PCBs have low to no mobility in soil and are 
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terrestrial animals and humans, and biomagnify in the food chain.  Bioconcentration factors (BCFs) in 
aquatic species range from 5 x 102 to 3 x 105, depending on the PCB congener and aquatic species 
(ATSDR, 2000).  Volatilization from moist soil and water surfaces is expected, but may be attenuated by 
adsorption to solids (HSDB, 2011).  In air, PCBs exist in both the vapor and particulate phases, and 
atmospheric transport mechanisms have dispersed PCBs globally (ATSDR, 2000; Wania and MacKay, 
1996). Vapor-phase PCBs are photolytically degraded with half-lives ranging from 3-490 days (HSDB, 
2011).  Particulate-phase PCBs are removed from the atmosphere by wet or dry deposition.  In general, 
biodegradation of PCBs is slow with the higher chlorinated congeners being the most resistant to 
environmental biodegradation (HSDB, 2011).  As a result, PCBs have been detected in a wide variety of 
environmental media that may be sources of human exposure.  
 

1.3. Human Exposure Pathways and Body Burdens 
Occupational exposure to PCBs may occur through inhalation and dermal contact at workplaces 

where PCBs are still present (e.g., handling PCB containing electrical equipment, spills or waste-site 
materials) (HSDB, 2011).  The general population is exposed to PCBs primarily via dietary intake of 
contaminated food and inhalation of PCB-contaminated air (Lehmann et al., 2015; ATSDR, 2000).  The 
major contributors to dietary exposure to PCBs include fatty foods such as fish, meat, and dairy products.  
Based on the U.S. Food and Drug Administration’s (FDA’s) analysis of data from the 2003 Total Diet 
Study (TDS), the average dietary exposure among the U.S. population is about 2 ng of PCB per kg of 
body weight per day (ng/kg-day) (FDA, 2014).  This represents a decline from FDA TDS estimates from 
earlier time periods (ATSDR, 2000). 

Inhalation has also been shown to be a contributor to total PCB exposure, especially in indoor 
settings where PCB sources exist (Lehmann et al., 2015; Harrad et al., 2009).  For example, elevated 
indoor air PCB concentrations have been observed in some public school buildings. Since September, 
2009, EPA has released a number of reports1 for school administrators and building managers with 
important information about managing airborne PCBs, and tools to help minimize possible exposure.  
General population exposure may also occur via dermal contact with PCBs in soil or other media, or 
incidental ingestion of PCB-contaminated soil or dust (ATSDR, 2000).  The presence of PCBs in blood, 
adipose tissue, and breast milk of non-occupationally exposed members of the general population of the 
United States provides evidence of widespread exposure (ATSDR, 2000). 

1 Polychlorinated Biphenyls (PCBs) in School Buildings: Sources, Environmental Levels, and Exposures, EPA-600-
R-12-051 (http://www.epa.gov/pcbsincaulk/pdf/pcb_EPA600R12051_final.pdf) 

Fact Sheet for Schools: Caulk Containing PCBs May Be Present in Older Schools and Buildings, EPA-747-F-09-
003 (http://www.epa.gov/pcbsincaulk/pdf/caulkschools1.pdf; 
http://www.epa.gov/pcbsincaulk/pdf/caulkschools2.pdf) 

Proper Maintenance, Removal, and Disposal of PCB-Containing Fluorescent Light Ballasts (FLBs) in School 
Buildings: A Guide for School Administrators and Maintenance Personnel 
(http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/ballasts.htm) 

How to Test for PCBs and Characterize Suspect Material (http://www.epa.gov/pcbsincaulk/guide/guide-sect3.htm) 
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In most epidemiological studies, PCB exposure is characterized using current measures of body 1 
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burden. Body burden measurements are often based on concentrations of PCBs in blood serum, breast 
milk or adipose tissue. These may be expressed on a whole-tissue basis (e.g., ng of PCB/g of serum) or 
may be lipid-adjusted (i.e., ng of PCB/g of lipid). Most studies of PCB body burden rely on a limited 
number of measured congeners. There is general agreement that PCBs 138, 153, and 180 are the most 
commonly detected congeners in human tissues, and quantitatively they are the dominant congeners in 
human adipose tissue and breast milk, with congeners 28, 118, and 170 also making large contributions 
(Thomsen et al., 2010; Hansen, 1998). Concentrations of these congeners are highly correlated with total 
tissue PCBs, and they serve as a useful index of cumulative exposure to the more persistent PCB 
congeners. However, it is important to note that exposure data consisting of only a few congeners may not 
accurately reflect exposures to many other PCBs, which may also be biologically active. 

PCB levels observed in human tissues tend to increase with age, but temporal trend studies have 
indicated that the overall levels in human milk and blood serum have declined over time since the 1970s 
(ATSDR, 2000). In a U.S. representative National Health and Nutrition Examination Survey (NHANES) 
subsample of serum from 1999-2000, PCBs 138, 153, and 180 explained 65% of total PCBs, as 
represented by the sum of 22 congeners (Needham et al., 2005).  However, as per the protocol with 
NHANES reporting, percentiles only were presented, and PCBs 138 and 153 were non-detect as high as 
the 75% percentile.  At the 90th percentile, the lipid-based (ng/g lipid) and serum-based (ng/g serum) 
concentrations were 54.7 and 0.36 for PCB 138, 83.3 and 0.56 for PCB 153, and 65.5 and 0.44 for PCB 
180.  At the 90th and 95th percentiles, the total PCB concentrations (sum of the 22 congeners) were 2.18 
and 3.04 ng/g serum, respectively (Needham et al., 2005).  Later NHANES surveys obtained better 
detection limits, and median concentrations of the three congeners were presented.  For NHANES 2003/4, 
the following are median lipid-based/serum-based concentrations (ng/g) of the three congeners for ages 
>20:  138 (presented as the sum of PCBs 138 and co-eluting 158) – 17.6/0.114; 153 – 24.2/0.156; and 180 
– 21.5/0.138 (CDC, 2015). 

1.4. Populations and Life Stages with Potentially Greater Exposures 
Populations with potentially greater than average exposures include recreational fishers and their 

families, and Native American or subsistence fishers who ingest PCB-contaminated fish at higher rates 
than that of the general population (ATSDR, 2000).  Several researchers have observed direct 
relationships between the quantity of fish consumed and PCB levels in blood (ATSDR, 2000).  For 
example, Hanrahan et al. (1999) reported on total PCB concentrations in the blood of sport fishers and a 
referent population.  The referent population was composed of “infrequent” consumers of Great Lakes 
fish and was broken into groups by male and female. Total PCB concentrations were based on the sum of 
89 congeners and were reported on a whole-serum basis.  The geometric mean concentration of PCBs in 
blood of males who frequently consumed Great Lakes sports fish (n=252) was 4.8 ng/mL compared to 1.5 
ng/mL for the referent population (n=57).  For females, the geometric mean PCB blood concentration was 
2.1 ng/mL for frequent consumers (n=187), compared to 0.9 ng/mL for the referent population (n=42).  
Elevations in PCB body burdens reported by NHANES among non-white populations, including non-
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Hispanic blacks, Asians, and Native Americans have been hypothesized to be due to higher consumption 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

of fish compared to white populations (Xue et al., 2014; Weintraub and Birnbaum, 2008).  Likewise, 
populations that consume large amounts of contaminated wild game, or eat a higher proportion of food 
grown in PCB-contaminated areas will likely have higher exposures and body burdens than the general 
population (ATSDR, 2000).  Because PCBs tend to accumulate in body lipids and can be transferred to 
infants via breast milk, nursing infants are another potentially highly exposed population. Studies have 
shown that infants who are breastfed for 6 months may receive up to 12% of their lifetime PCB body 
burden from human milk (ATSDR, 2000). Occupational groups who may come into contact with PCB-
contaminated media may also have exposures higher than the general population (i.e., inhalation, dermal 
contact, or incidental ingestion of PCB residues from contact with contaminated materials in the 
workplace, during repair and maintenance of electrical equipment containing PCBs, or from accidents or 
fires involving PCBs) (ATSDR, 2000). 
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At present, the IRIS database contains separate quantitative oral reference doses (RfDs) for 
Aroclor 1016 (http://www.epa.gov/iris/subst/0462.htm) and Aroclor 1254 
(http://www.epa.gov/iris/subst/0389.htm), a qualitative discussion regarding non-cancer effects of oral 
exposure to Aroclor 1248 (http://www.epa.gov/iris/subst/0649.htm), and cancer slope factors for 
environmental PCB mixtures via oral and inhalation routes (http://www.epa.gov/iris/subst/0294.htm). The 
non-cancer assessment for Aroclor 1016 was completed in 1993; assessments for Aroclors 1248 and 1254 
were completed in 1994. The cancer assessment for environmental PCB mixtures was completed in 1996. 
There is no IRIS RfD for complex PCB mixtures in general. Nor is there an IRIS inhalation reference 
concentration (RfC) for PCBs. Since 1994, a number of studies on the non-cancer health effects of 
exposure to environmentally-relevant PCB mixtures (e.g., similar to those found in contaminated fish or 
human milk) have been conducted, and new data are available. 

Since the U.S. ban on commercial manufacture of PCBs in 1979, their use, manufacture, cleanup 
and disposal have been regulated under TSCA (40 CFR 761). However, as discussed above, because of 
their past widespread use and persistence in the environment, humans continue to be exposed to PCBs by 
inhalation of volatilized PCBs, inhalation of contaminated dust, contact with contaminated dust, contact 
with primary or secondary sources of PCBs, and ingestion of foods contaminated with PCBs, including 
breast milk. In addition to regulation under TSCA, PCBs are regulated under the Clean Water Act, the 
Safe Drinking Water Act, and the Resource Conservation and Recovery Act. Accordingly, PCBs are of 
interest to several EPA program offices as well as regional offices due to widespread human exposure to 
PCBs from many sources and through multiple environmental media. 

A new IRIS assessment will evaluate non-cancer human health hazards associated with PCB 
exposure through oral, inhalation and dermal routes, provided adequate data are available. Dose-response 
information for identified hazards will also be included when feasible because this information can be 
useful for both characterizing risks at varying exposure levels and analyzing benefits associated with 
reducing exposures. A dose-response assessment for the dermal route of exposure is not planned at this 
point because oral and inhalation exposure are generally considered the major exposure routes. However, 
toxicokinetic data relevant to dermal exposure will be included to support the evaluation of potential risks 
from dermal exposures.  Furthermore, no new assessment for PCB cancer risk is planned because the 
carcinogenicity of environmentally-relevant PCB mixtures is addressed in the 1996 assessment and an 
update of the evaluation of cancer risk from PCB exposure has not been identified as a priority need.  
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3.1. Preliminary Literature Survey 
A preliminary literature survey was performed to identify non-cancer health outcomes whose 

possible association with PCBs has been investigated.  This survey consisted of a search for health 
assessment information produced by other federal, state, and international health agencies, and an 
additional broad search of PubMed to locate more recent studies.  The review of health assessment 
information results was used to narrow the list of health effect categories for consideration in the IRIS 
assessment and was supplemented by the PubMed search covering dates after the health assessments’ 
publication. In addition, the preliminary literature survey was used to identify key scientific issues, 
including potential mode of action hypotheses that warrant evaluation in the assessment.   

The following health assessments, in addition to EPA’s IRIS assessments for Aroclor 1016 
(http://www.epa.gov/iris/subst/0462.htm), Aroclor 1248 (http://www.epa.gov/iris/subst/0649.htm), and 
Aroclor 1254 (http://www.epa.gov/iris/subst/0389.htm), are available from several federal, state, and 
international health agencies (in reverse chronological order): 

 
1. Agency for Toxic Substances and Disease Registry.  ATSDR (2011). Addendum to the 

toxicological profile for polychlorinated biphenyls. 
http://www.atsdr.cdc.gov/ToxProfiles/pcbs_addendum.pdf 

2. National Institute for Occupational Safety and Health. (NIOSH) (2010). NIOSH pocket guide to 
chemical hazards.  RTECS.  Chlorodiphenyl (54% chlorine).   
http://www.cdc.gov/niosh/npg/npgd0126.html  

3. National Institute for Occupational Safety and Health. (NIOSH) (2010). NIOSH pocket guide to 
chemical hazards.  RTECS.  Chlorodiphenyl (42% chlorine).   
http://www.cdc.gov/niosh/npg/npgd0125.html 

4. Occupational Safety and Health Administration. OSHA (2007).  Chemical Sampling Information, 
Chlorodiphenyl (54% Cl). https://www.osha.gov/dts/chemicalsampling/data/CH_227500.html 

5. World Health Organization. WHO (2003). Concise International Chemical Assessment 
Document 55. Polychlorinated Biphenyls: Human Health Aspects. 
http://www.who.int/ipcs/publications/cicad/en/cicad55.pdf  

6. Agency for Toxic Substances and Disease Registry.  ATSDR (2000). Toxicological profile for 
polychlorinated biphenyls (PCBs). http://www.atsdr.cdc.gov/ToxProfiles/tp17.pdf 

 
Overall, the Toxicological Profile for Polychlorinated Biphenyls (PCBs) (ATSDR, 2011, 2000) 

was found to be the most comprehensive and current resource, including detailed information on the 
widest array of health effects and synthesizing evidence from the largest number of primary research 
articles. Information from other assessments listed above was included in the preliminary literature survey 
to the extent that it added to the information already presented in (ATSDR, 2011, 2000). 
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January, 2015 in order to identify studies more recent than those included in ATSDR's Addendum to the 
Toxicological Profile for Polychlorinated Biphenyls (ATSDR, 2011).  The PubMed search was not 
intended to be a comprehensive search of the available literature, but was intended to identify PCB non-
cancer health outcomes that had not been previously evaluated (i.e., they were not a part of previous study 
designs) or were not observed in previous studies evaluated in prior health assessments.  Search terms 
focused on each of the health outcomes shown in Table 1 and included a range of related terms.  For 
instance, renal effects search terms included polychlorinated biphenyls in conjunction with kidney and 
nephrotoxicity.  All results of the PubMed search were screened by title and abstract to identify those 
appropriate for health assessment. 

 

3.2. Health Outcomes Identified by the Preliminary Literature Survey  
The preliminary literature survey identified human, animal, and in vitro studies related to multiple 

non-cancer health outcomes, mechanisms of action, mode of action hypotheses, pharmacokinetics, and 
susceptible lifestages or subpopulations.  Each row in Table 1 summarizes whether data are available on a 
particular broad health effect category or other toxicologically-relevant information. While the 
checkmarks in Table 1 indicate the existence of studies that investigated certain health effect categories in 
the context of PCB exposure, they do not indicate whether or not the data from those studies support 
associations between PCB exposure and health effects in those categories. Each column in Table 1 
indicates the types of studies that are available with respect to test system (i.e., human, animal, or in vitro) 
and exposure route (i.e., oral or inhalation) for animal studies or exposure setting (i.e., occupational, high 
fish and/or seafood consumption2, or general population) for human studies.  As discussed in Section 1.3, 
humans may be exposed to PCBs by more than one exposure route in a single exposure setting. For 
example, the bulk of an occupational exposure may have occurred through the inhalation and dermal 
routes while the general population may be exposed through the diet (i.e., oral exposure), through 
inhalation of contaminated indoor air, and through dermal contact with contaminated dust or soil. In 
addition, the table indicates whether animal studies of subchronic, chronic, or developmental design3 are 
available.  

2 Studies of populations with “high fish and/or seafood consumption” were those in which the study authors 
identified fish and/or seafood consumption as the PCB exposure source presumed to be dominant in the study 
population. 
3 In developmental studies, animals are exposed to a chemical during a critical window of development (i.e., the 
developmental period of vulnerability during which adverse effects may be triggered by exposures to environmental 
agents or other stressors). The critical windows of development for most biological systems occur during the 
prenatal and early postnatal periods, but certain systems (e.g., nervous and reproductive systems) do continue to 
develop throughout early life and adolescence. Studies conducted outside of a critical window of development may 
be characterized by exposure duration: acute (< 24 hours), short-term (>24 hours up to 30 days), subchronic (>30 
days up to 10% of lifetime), and chronic (up to a lifetime). 

 
 7  

                                                      



Scoping and Problem Formulation Materials for PCBs 

Table 1. Database of PCB studies by test system, route of exposure, and health effect 1 
2 category1 

 
Human Studies Animal Studies 

In Vitro  
Studies 

 

Occupational 

High Fish 
and/or Seafood 
Consumption2 

General 
Population Oral Inhalation  

Health Effect Categories 
Cardiovascular      

(Subchronic, 
Chronic) 

  

Dermal and 
Ocular 

    
(Subchronic, 

Chronic, 
Developmental) 

  

Effects on 
growth and 
maturation 

    
(Subchronic, 

Chronic, 
Developmental) 

 
(Subchronic) 

 

Endocrine      
(Subchronic, 

Developmental) 

 
(Subchronic) 

 

Gastrointestinal      
(Subchronic, 

Chronic) 

  

Hematological      
(Subchronic, 

Chronic) 

 
(Subchronic) 

 

Hepatic      
(Subchronic, 

Chronic, 
Developmental) 

 
(Subchronic) 

 

Immunological      
(Subchronic, 

Chronic, 
Developmental) 

 
(Subchronic) 

 

Metabolic 
disease 

    
(Subchronic, 

Chronic) 

  

Musculoskeletal      
(Subchronic, 

Chronic) 

  

Neurological and 
Sensory  

    
(Subchronic, 

Developmental) 

 
(Subchronic) 

 

Renal      
(Subchronic, 

Chronic) 

 
(Subchronic) 

 
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Reproductive      
(Subchronic, 

Chronic, 
Developmental) 

  

Respiratory      
(Subchronic, 

Chronic) 

 
(Subchronic) 

 

Other Data and Analyses 
ADME3       

Toxicokinetic 
models4 

      

Mode of action 
hypotheses 

    
(Subchronic, 

Chronic, 
Developmental) 

  

Susceptibility 
data5 

    
(Developmental) 

  

Genotoxicity6     
(Subchronic) 

  

 1 Checkmarks indicate that studies have been identified, but do not indicate the results of those 
studies; the absence of a checkmark indicates that no studies were identified for a given health 
effect category and study design. 
2 Studies of populations with “high fish and/or seafood consumption” were those in which the 
study authors identified fish and/or seafood consumption as the PCB exposure source presumed to 
be dominant in the study population. 
3 Studies conducted in humans and animals demonstrate rapid absorption of PCBs by inhalation, 
oral, and dermal routes of exposure. 
4 Earliest PBPK models for PCBs were based on i.v. exposure. Models also exist for dermal 
exposure. 
5 Individuals who may be more susceptible to toxic effects include young children, especially those 
who are breastfed. 
6 Includes studies investigating potential epigenetic impacts of PCB exposure 

 

  

1 

2 
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3.3. Health Outcomes That May Be Considered for Systematic Review  1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

The literature noted and screened in Section 3.2 was used to identify broad categories of potential 
health effects considered to be most relevant for assessment.  The following is a list of broad health effect 
categories in which effects were observed and for which there may be enough data to further evaluate 
specific health endpoints: cardiovascular, dermal and ocular, developmental effects on growth and 
maturation, endocrine, gastrointestinal, hematological, hepatic, immunological, metabolic, neurological, 
and reproductive effects. A large number of specific health endpoints could be affected within each of 
these categories. A review of the literature associated with the broad health effect categories for which 
effects were noted is proposed to determine if a systematic review should be undertaken related to one or 
more specific health endpoints within the categories.  The systematic reviews to evaluate if an association 
exists between exposure to PCBs and specific health endpoints would include analyses of available 
human, experimental animal, and in vitro studies. 

A brief summary of other agencies’ conclusions for each broad health effect category is provided 
below.    

 

Cardiovascular Effects 
ATSDR (2000) identified occupational exposure studies investigating the possible relationship 

between PCB exposure and increased risk of cardiovascular disease or altered blood pressure. According 
to ATSDR (2000), conclusions could not be drawn from these studies because of the inconsistency of the 
results. The inconsistent results could be due to differences in exposure levels, durations, and latencies, as 
well as types of PCB mixtures and cohort sizes. 

Some studies of human populations exposed outside the workplace have identified associations 
between PCB exposure and hypertension (Goncharov et al., 2011; Kreiss et al., 1981) or cardiovascular 
disease, defined by the study authors as a physician’s diagnosis of any of the following: 1) coronary heart 
disease; 2) angina/angina pectoris; 3) heart attack/myocardial infarction; or 4) stroke (Ha et al., 2007). 
However, the results of some of these studies may be confounded by associations between serum PCB 
levels and (1) age, (2) serum cholesterol and triglyceride levels, and (3) serum levels of other persistent 
organic pollutants (e.g., dichlorodiphenyltrichloroethane (DDT)). 

Data on the cardiovascular toxicity of PCBs in animals are limited to several oral exposure 
studies conducting histological examinations of the heart and blood vessels (ATSDR, 2000). Pericardial 
edema occurred in monkeys subchronically exposed to a high PCB dose (i.e., 12 mg/kg-day) in the diet 
(Allen et al., 1973). However, no effects on cardiac tissue were observed in monkeys exposed to PCBs at 
much lower doses for a longer duration (Arnold et al., 1997) or in rats exposed at dose levels up to 11.2 
mg/kg-day for 24 months (Mayes et al., 1998).  

A further review of information related to PCB exposure and cardiovascular effects will be used 
to determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach.  
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Dermal and Ocular Effects 
Dermal alterations (e.g., chloracne) and ocular effects (e.g., hypersecretion of the tarsal glands 

and abnormal pigmentation of the conjunctiva) are commonly-observed markers of exposure to PCBs and 
other dioxin-like compounds (e.g., polychlorinated dibenzodioxins (PCDDs) and polychlorinated 
dibenzofurans (PCDFs)) (ATSDR, 2000). These effects have been observed in individuals occupationally 
exposed to PCBs. Although dermal and ocular alterations have appeared in these highly-exposed 
populations, no adverse dermal or ocular effects have been reported in subjects with high consumption of 
Great Lakes fish contaminated with PCBs and other environmentally persistent chemicals or in other 
cohorts from the general population although it is unknown if this outcome was systematically studied in 
these cohorts. PCB-related dermal and ocular effects are well-characterized in monkeys after oral 
exposure to commercial PCB mixtures and are generally similar to those observed in humans exposed to 
high concentrations of PCBs (Arnold et al., 1997; Arnold et al., 1995; Arnold et al., 1993b; Arnold et al., 
1993a; Schantz et al., 1991; Arnold et al., 1990; Schantz et al., 1989; Levin et al., 1988; Tryphonas et al., 
1986b; Tryphonas et al., 1986a; Barsotti and van Miller, 1984; Allen et al., 1980; Becker et al., 1979; 
Thomas and Hinsdill, 1978; Allen and Barsotti, 1976; Allen and Norback, 1976; Barsotti et al., 1976; 
Allen et al., 1974). 

 A further review of information related to PCB exposure and dermal and ocular effects will be 
used to determine what questions, if any, on specific endpoints should be addressed using a systematic 
review approach. 

 

Developmental Effects on Growth and Maturation 
A number of epidemiology studies have evaluated developmental effects on anthropometric 

parameters in children following maternal PCB exposure (ATSDR, 2000). The effects observed in these 
studies varied. Some studies found no association between PCB exposure and anthropometric effects 
(Konishi et al., 2009; Givens et al., 2007; Longnecker et al., 2005; Vartiainen et al., 1998; Lonky et al., 
1996; Rogan et al., 1986) while others observed significant associations with effects including birth 
weight, gestational age, infant head circumference, and body weight later in life. Of the significant 
associations reported, some were positive (Verhulst et al., 2009; Dar et al., 1992), and others were 
negative (Tan et al., 2009; Halldorsson et al., 2008; Hertz-Picciotto et al., 2005; Tajimi et al., 2005; 
Blanck et al., 2002; Patandin et al., 1998; Rylander et al., 1998; Rylander et al., 1995; Fein et al., 1984b). 
The wide range of results from these studies may reflect variations in study design and study populations: 
different degrees of control for confounders; different techniques for PCB analysis; measurement of PCBs 
in different sample types; different levels of exposure; assessment of exposure at different times; 
inclusion of different sets of PCB congeners in the analysis; and the presence of a variety of co-
contaminants.  

In addition to anthropometric effects, prenatal PCB exposure has been reported to affect offspring 
gender and development, including a reduction in male births (Hertz-Picciotto et al., 2008), undescended 
testes (Brucker-Davis et al., 2008), and decreased sex hormone levels in males (Cao et al., 2008). 
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Although studies have reported no effect of prenatal PCB exposure on puberty onset for most male or 
female endpoints (
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Leijs et al., 2008; Vasiliu et al., 2004; Gladen et al., 2000), studies of childhood PCB 
exposure have reported effects on anthropometric measures (Burns et al., 2011) and timing of pubertal 
development in boys (Den Hond et al., 2011) and girls (Den Hond et al., 2011; Denham et al., 2005). 

Developmental effects of perinatal exposure to PCB mixtures have also been reported in animals 
at doses as low as 0.028 mg/kg-day (reduced birth weight in the offspring of rhesus monkeys exposed to 
Aroclor 1016 in the diet prior to mating and throughout gestation (Schantz et al., 1991; Schantz et al., 
1989; Levin et al., 1988; Barsotti and van Miller, 1984; Allen et al., 1980; Allen and Barsotti, 1976)). 
Data in rats exposed to PCB mixtures, including a mixture of congeners developed to mimic the congener 
profile found in human milk, confirm an effect on birth weight and/or postnatal growth in the absence of 
overt signs of maternal toxicity (Bowers et al., 2004; Kaya et al., 2002; Zahalka et al., 2001; Lilienthal et 
al., 2000; Hany et al., 1999; Goldey et al., 1995; Overmann et al., 1987; Spencer, 1982; Collins and 
Capen, 1980). 

Fetal mortality following gestational PCB exposure has been observed in monkeys, mink, rats, 
rabbits and chickens (Brunström et al., 2001; Bäcklin et al., 1998a; Bäcklin et al., 1998b; Bäcklin et al., 
1997; Gould et al., 1997; Arnold et al., 1995; Bäcklin and Bergman, 1995; Sager and Girard, 1994; 
Kihlstrom et al., 1992; Arnold et al., 1990; Wren et al., 1987; Brezner et al., 1984; Spencer, 1982; Allen 
et al., 1980; Aulerich and Ringer, 1977; Barsotti et al., 1976; Allen et al., 1974; Lillie et al., 1974; 
Villeneuve et al., 1971). Postnatal death has been observed with perinatal PCB exposure in monkeys, 
mink, mice and rats (Bowers et al., 2004; Bushnell et al., 2002; Brunström et al., 2001; Huang et al., 
1998a; Goldey et al., 1995; Schantz et al., 1991; Schantz et al., 1989; Levin et al., 1988; Wren et al., 
1987; Brezner et al., 1984; Allen et al., 1980; Allen and Barsotti, 1976; Linder et al., 1974). 

A further review of information related to PCB exposure and developmental effects on growth 
and maturation will be used to determine what questions, if any, on specific endpoints should be 
addressed using a systematic review approach. 

 

Endocrine Effects  
Studies examining relationships between PCB exposure and thyroid hormone status in children or 

adults have reported a variety of different results, with findings of both negative and positive significant 
correlations between PCB exposure and circulating levels of TSH, T4 or T3 (Han et al., 2011; Darnerud et 
al., 2010; Alvarez-Pedrerol et al., 2009; Dallaire et al., 2009a; Dallaire et al., 2009b; Abdelouahab et al., 
2008; Alvarez-Pedrerol et al., 2008; Chevrier et al., 2008; Herbstman et al., 2008; Schell et al., 2008; 
Chevrier et al., 2007; Maervoet et al., 2007; Meeker et al., 2007; Turyk et al., 2007; Takser et al., 2005; 
Wang et al., 2005; Schell et al., 2004; Persky et al., 2001; Sala et al., 2001; Osius et al., 1999; Gerhard et 
al., 1998; Winneke et al., 1998a; Koopman-Esseboom et al., 1994). The apparent inconsistency among 
studies may stem from factors such as the use of different types of PCB analyses (e.g., Aroclor analyses, 
measures of total PCBs, and congener or isomer analyses), varying ages of cohorts, varying exposure 
settings (which may differ in both congener profile and route(s) of exposure), and differences in statistical 
methods employed. The most common findings are negative associations between PCBs and measures of 
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T3 and/or T4 and positive associations with TSH, especially in studies of the effects of post-lactational 
PCB exposure (
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Han et al., 2011; Alvarez-Pedrerol et al., 2009; Dallaire et al., 2009a; Abdelouahab et al., 
2008; Schell et al., 2008; Meeker et al., 2007; Turyk et al., 2007; Schell et al., 2004; Sala et al., 2001; 
Osius et al., 1999). Studies focused on developmental exposure often find decreased T4 with increased 
PCBs, but no change in TSH, which may suggest that these types of exposures are associated with 
decreased fT4 feedback to the hypothalamus (Herbstman et al., 2008; Maervoet et al., 2007; Wang et al., 
2005). Chronic, developmental, and subchronic duration animal studies also provide evidence for an 
effect of PCB exposure on thyroid hormone homeostasis (ATSDR, 2000). Furthermore, effects on the 
adrenal glands and serum adrenal steroid levels have also been observed in experimental animals exposed 
orally to PCBs (Rao and Banerji, 1993; Byrne et al., 1988; Rao and Banerji, 1988).  

A further review of information related to PCB exposure and endocrine effects will be used to 
determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach. 

 

Gastrointestinal Effects 
Gastrointestinal effects, including loss of appetite (Smith et al., 1982), postprandial epigastric 

distress, epigastric pain with or without a burning sensation, postprandial headache, and intolerance to 
fatty foods (Maroni et al., 1981), have been observed in occupationally-exposed human populations. 
However, the study by Maroni et al. (1981) did not include a control group, so the significance of that 
study’s findings are unclear. Baker et al. (1980) reported no signs of gastrointestinal effects in community 
members exposed to PCB-contaminated sludge or in PCB-exposed workers. Animal studies provide 
evidence of PCB-induced gastrointestinal effects in monkeys (Tryphonas et al., 1986b; Tryphonas et al., 
1986a; Tryphonas et al., 1984; Becker et al., 1979; Allen and Norback, 1976; Allen, 1975; Allen et al., 
1974; Allen et al., 1973; Allen and Norback, 1973), mink (Hornshaw et al., 1986; Bleavins et al., 1980), 
and pigs (Hansen et al., 1976), but not rats (Mayes et al., 1998). 

A further review of information related to PCB exposure and gastrointestinal effects will be used 
to determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach. 

 

Hematological Effects 
In general, hematological effects have not been observed in humans occupationally exposed to 

PCBs (ATSDR, 2000). However, anemia has been observed in monkeys exposed to PCBs in studies of 
subchronic (Allen and Norback, 1976; Allen et al., 1974; Allen et al., 1973; Allen and Norback, 1973) 
and chronic duration (Arnold et al., 1990; Tryphonas et al., 1986b; Tryphonas et al., 1986a; Tryphonas et 
al., 1984). A decrease in mean platelet volume was also observed in monkeys exposed to 0.02 mg/kg-day 
Aroclor 1254 for 37 months (Arnold et al., 1993a). However, monkeys receiving daily doses of 0.08 
mg/kg-day Aroclor 1254 for 72 months showed no effect on hematological parameters (Arnold et al., 
1997).  
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No consistent hematologic effects were observed in rats, guinea pigs, rabbits, or mink exposed to 1 
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PCB mixtures for subchronic durations (Aulerich and Ringer, 1977; Street and Sharma, 1975; Bruckner et 
al., 1974; Allen and Abrahamson, 1973; Vos and de Roij, 1972; Treon et al., 1956). Exposure to 2.7 
mg/kg-day Aroclor 1016 or 1.4 mg/kg-day Aroclor 1260 for 24 months resulted in reduced red blood cell 
count and hemoglobin concentration in female rats (Mayes et al., 1998); however, in the same study, there 
were no hematologic effects observed in female rats exposed to Aroclor 1242 or 1254, or in male rats 
exposed to Aroclor 1016, 1242, 1254, or 1260.  

A further review of information related to PCB exposure and hematological effects will be used 
to determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach. 

 

Hepatic Effects 
Hepatic effects have been investigated in a number of epidemiology studies and clinical surveys 

of PCB-exposed workers (ATSDR, 2000). Increased serum levels of liver-related enzymes, particularly 
gamma-glutamyl transpeptidase (GGT), alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), alkaline phosphatase (AP), and/or lactate dehydrogenase (LDH), were reported in many of these 
studies (Stehr-Green et al., 1986b; Stehr-Green et al., 1986a; Steinberg et al., 1986; Emmett, 1985; 
Lawton et al., 1985; Chase et al., 1982; Kreiss et al., 1981; Maroni et al., 1981; Fischbein et al., 1979). 
Additionally, increases in levels of these serum enzymes have been correlated with serum PCB levels 
(Cave et al., 2010; Stehr-Green et al., 1986b; Stehr-Green et al., 1986a; Steinberg et al., 1986; Emmett, 
1985; Lawton et al., 1985; Chase et al., 1982; Smith et al., 1982; Kreiss et al., 1981; Fischbein et al., 
1979). 

The hepatotoxicity of PCBs has been investigated in numerous chronic, developmental, and 
subchronic duration studies in animals, particularly in rats and monkeys, which are the most extensively 
tested species. Liver effects are similar in nature among species, appear to be reversible when mild, and 
characteristically include the following: 
• 

• 

• 

hepatic microsomal enzyme induction (e.g., rats exposed to 0.3 mg/kg-day Aroclor 1242 for 2 
months (Bruckner et al., 1974)); 
increased serum levels of liver-related enzymes indicative of possible hepatocellular damage 
(e.g., rhesus monkeys exposed to 0.02 mg/kg-day Aroclor 1254 for 6.5 years (Arnold et al., 
1997)); 
liver enlargement (e.g., rabbits exposed to 0.18 mg/kg-day Aroclor 1254 for 8 weeks (Street and 
Sharma, 1975); monkeys exposed to 0.2 mg/kg-day Aroclor 1254 for 12-13 months (Tryphonas 
et al., 1986b); offspring of rats exposed to 0.27 mg/kg-day Aroclor 1254 from mating until 
weaning on postnatal day (PND) 21 (Overmann et al., 1987); offspring of rats exposed from 50 
days prior to mating and throughout gestation to ≥ 0.5 mg/kg-day of a mixture of PCB congeners 
developed to mimic the congener profile found in human milk (Kaya et al., 2002; Hany et al., 
1999)); 
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• 

• 

• 

• 

fat deposition (e.g., rats exposed to 2.4 mg/kg-day Aroclor 1254 for 140 days (Bruckner et al., 
1977)); 
fibrosis (e.g., rats exposed to 1.4 mg/kg-day Aroclor 1260 for 8 months (Kimbrough et al., 
1972)); 
necrosis (e.g., rhesus monkeys exposed to 0.2 mg/kg-day Aroclor 1254 for 28 months (Tryphonas 
et al., 1986a)); and 
hepatic porphyria (e.g., rats exposed to 0.3 mg/kg-day Aroclor 1242 for 2 months (Bruckner et 
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al., 1974)). 
The references listed above represent only a subset of an extensive database of animal studies observing 
hepatic effects from oral exposures; these were selected for the purposes of this document to highlight 
studies reporting effects at relatively low PCB doses and/or administering environmentally-relevant PCB 
mixtures, and where possible, to illustrate potential species differences in sensitivity. This list is not 
intended to reflect either the full list of studies of hepatic effects to be included in the assessment or the 
criteria by which those studies will be selected. A further review of information related to PCB exposure 
and hepatic effects will be used to determine what questions, if any, on specific endpoints should be 
addressed using a systematic review approach. 

 

Immunological Effects 
Immunologic changes have been observed in human populations exposed to PCB mixtures 

(ATSDR, 2000). Findings include alterations in thymic volume (Park et al., 2008), serum antibody levels 
(Gerhard et al., 1998), white blood cell counts (Svensson et al., 1994; Lawton et al., 1985), and 
lymphocyte profiles (Glynn et al., 2008; Nagayama et al., 2007; Belles-Isles et al., 2002). Several 
epidemiological studies have also investigated a possible association between immune effects and early-
life PCB exposure (i.e., in utero and/or by breastfeeding). The number of childhood infectious illnesses 
(i.e., lower respiratory tract, gastrointestinal tract and middle-ear infections) during the first 5 years of life 
was positively correlated with prenatal PCB exposure in a study of Inuit women who consumed 
contaminated marine foods (Dallaire et al., 2006; Dallaire et al., 2004) although other immunological 
endpoints and possible associations with other chemicals in the foods were not investigated. Similarly, 
decreased antibody response to diphtheria and tetanus was observed in children from a Faroe Island 
population (Heilmann et al., 2010; Heilmann et al., 2006). The Dutch environmental exposure study 
(Weisglas-Kuperus et al., 2004; Weisglas-Kuperus et al., 2000) also revealed significant correlations 
between pre- and postnatal exposure to PCBs and both the incidence of infection (i.e., ear infection and 
chicken pox) and antibody levels to common childhood vaccines (i.e., mumps and measles) at 42 months 
of age. These effects were not observed in the same population at 18 months of age (Weisglas-Kuperus et 
al., 1995), suggesting that developmental effects of PCBs on immune function may not be detectable in 
very young children. This may help to explain conflicting results in a number of studies of PCB-exposed 
human infants (Jusko et al., 2010; Glynn et al., 2008). Conflicting results may also occur because the 
human populations that have been studied differ greatly with respect to sources of PCB exposure. In 
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addition, these populations are likely to vary with respect to exposure to both non-PCB contaminants and 1 
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certain nutrients that may affect susceptibility to infections.  
The immunotoxicity of PCBs has also been evaluated in various species of animals (ATSDR, 

2000). Studies in rats, mice, guinea pigs, rabbits, and monkeys have shown that oral exposure to PCB 
mixtures can induce morphological alterations in the immune system: 
• decreased thymus weight (e.g., rats exposed to 10 mg/kg-day Aroclor 1254 for 15 weeks 

(Smialowicz et al., 1989); offspring of rats exposed to 0.27 mg/kg-day Aroclor 1254 from mating 
until weaning on PND 21 (Overmann et al., 1987); offspring of mink exposed to 0.3 mg/kg-day 
Clophen A50 for 18 months (including 2 breeding seasons) (Brunström et al., 2001); 
decreased spleen weight (e.g., offspring of mice exposed to ~42 mg/kg-day Aroclor 1254 
throughout gestation and lactation (Talcott and Koller, 1983)); 
thymic atrophy and/or other thymic lesions (e.g., rats exposed to 0.033 mg/kg-day Aroclor 1242 
for 30 days (Casey et al., 1999); offspring of mice exposed to 4.3 mg/kg-day of a 2:1 mixture of 
Aroclors 1242 and 1254 throughout gestation and lactation (Segre et al., 2002); rabbits exposed to 
0.18 mg/kg-day Aroclor 1254 for 8 weeks (Street and Sharma, 1975); cynomolgus monkeys 
exposed to 2 mg/kg-day Aroclor 1248 or 5 mg/kg-day Aroclor 1254 for up to 164 days 
(Tryphonas et al., 1984); offspring of rhesus monkeys exposed to 0.01 mg/kg-day Aroclor 1248 
from 12 months prior to breeding until offspring weaning at 4 months of age (Schantz et al., 
1991; Schantz et al., 1989; Levin et al., 1988));  
histopathological changes in the spleen (e.g., rabbits exposed to 2.1 mg/kg-day Aroclor 1254 for 
8 weeks (Street and Sharma, 1975); offspring of rhesus monkeys exposed to 0.1 mg/kg-day 
Aroclor 1248 from 7 months prior to breeding and throughout gestation and lactation (Allen and 
Barsotti, 1976); rhesus monkeys exposed to 0.2 mg/kg-day Aroclor 1254 for 28 months 
(Tryphonas et al., 1986a);  
histopathological changes in the lymph nodes (e.g., rabbits exposed to 0.92 mg/kg-day Aroclor 
1254 for 8 weeks (Street and Sharma, 1975); rhesus monkeys exposed to 0.2 mg/kg-day Aroclor 
1254 for 28 months (Tryphonas et al., 1986a)); and 
histopathological changes in the bone marrow (e.g., offspring of rhesus monkeys exposed to 0.1 
mg/kg-day Aroclor 1248 from 7 months prior to breeding and throughout gestation and lactation 
(Allen and Barsotti, 1976); cynomolgus monkeys exposed to 0.2 mg/kg-day Aroclor 1254 for 12-

• 

• 

• 

• 

• 

13 months (Tryphonas et al., 1986b)). 
Oral PCB exposure also revealed effects on immune function as indicated by altered responses in humoral 
and cell-mediated immunity assays and host resistance tests: 
• 

• 

• 

reduced antibody response to tetanus toxoid (e.g., guinea pigs exposed to 0.77 mg/kg-day Aroclor 
1260 for 8 weeks (Vos and de Roij, 1972)); 
reduced antibody response to keyhole limpet hemocyanin (e.g., rats exposed to 4.3 mg/kg-day 
Aroclor 1254 for 10 weeks (Exon et al., 1985)); 
reduced antibody response to sheep red blood cells (SRBCs) (e.g., mice exposed to 22 mg/kg-day 
Aroclor 1242 for 6 weeks (Loose et al., 1977); rhesus monkeys exposed to 0.005 mg/kg-day 
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Aroclor 1254 for 23 months (Tryphonas et al., 1989), offspring of rhesus monkeys exposed to 
0.005 mg/kg-day Aroclor 1254 from 37 months before mating and throughout gestation and 
lactation (Arnold et al., 1995)); 

• increased susceptibility to infection by S. typhimurium (e.g., mice exposed to 195 mg/kg-day 
Aroclor 1248 for 5 weeks (Thomas and Hinsdill, 1978)); 

• increased herpes simplex virus- and ectromelia virus-induced mortality (e.g., mice exposed to 33 
mg/kg-day Kanechlor 500 for 31 days (Imanishi et al., 1980)); and 

• increased sensitivity to S. typhosa endotoxin, and increased parasitemia and mortality in malaria-
inoculated animals (e.g., mice exposed to 22 mg/kg-day Aroclor 1242 for 6 weeks (Loose et al., 
1978b)). 

Skin reactivity to tuberculin was reduced in guinea pigs exposed to 3.9 mg/kg-day Clophen A60 for 6 
weeks (Vos and van Driel-Grootenhuis, 1972), but not in rabbits exposed to 6.5 mg/kg-day Aroclor 1254 
for 8 weeks (Street and Sharma, 1975), and there was no effect on delayed-type hypersensitivity to the 
skin sensitizer oxazolone in the offspring of mice exposed throughout gestation and lactation to ~42 
mg/kg-day Aroclor 1254 (Talcott and Koller, 1983). Natural killer cell activity was reduced in rats 
following subchronic oral exposure to doses ≥ 4.3 mg/kg-day Aroclor 1254 (Smialowicz et al., 1989; 
Talcott et al., 1985). 

The references discussed above represent only a subset of an extensive database of animal studies 
observing immunological effects associated with oral exposure to PCB mixtures; these were selected for 
the purposes of this document to highlight effects of PCBs at relatively low doses, and where possible, to 
illustrate potential species differences in sensitivity. These references are not intended to reflect either the 
full list of studies of immunological effects to be included in the assessment or the criteria by which those 
studies will be selected. A further review of information related to PCB exposure and immunological 
effects will be used to determine what questions, if any, on specific endpoints should be addressed using a 
systematic review approach. 

 

Metabolic Disease 
Epidemiological studies have identified associations between specific components of the 

metabolic syndrome (i.e., central obesity, high serum triglycerides, low serum HDL-cholesterol, 
hyperglycemia, hypertension and insulin resistance) and PCB exposure (Dirinck et al., 2011; Goncharov 
et al., 2011; Lee et al., 2011; Uemura et al., 2009; Langer et al., 2007; Lee et al., 2007a; Emmett et al., 
1988a; Stehr-Green et al., 1986b; Stehr-Green et al., 1986a; Steinberg et al., 1986; Emmett, 1985; Lawton 
et al., 1985; Chase et al., 1982; Smith et al., 1982; Kreiss et al., 1981; Baker et al., 1980). Furthermore, 
both metabolic syndrome and PCB exposure have been associated with increased risk of developing type 
2 diabetes mellitus (Grandjean et al., 2011; Turyk et al., 2009a; Turyk et al., 2009b; Uemura et al., 2008; 
Wang et al., 2008; Codru, 2007; Everett et al., 2007; Lee et al., 2007b; Rignell-Hydbom et al., 2007; Lee 
et al., 2006; Vasiliu et al., 2006; Rylander et al., 2005; Fierens et al., 2003) and cardiovascular diseases, 
including coronary artery disease and stroke (Ha et al., 2007). In a diabetes-prone strain of mice, 
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subchronic PCB exposure was found to exacerbate whole-body insulin resistance in diet-induced obese 
animals and to produce hyperinsulinemia in both lean and obese animals (
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Gray et al., 2013).  
A further review of information related to PCB exposure and metabolic disease will be used to 

determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach. 

 

Musculoskeletal Effects 
One study on the musculoskeletal toxicity of PCBs in humans was identified by ATSDR (2000). 

In this study, joint and muscle pain were reported by workers exposed to various Aroclors at mean area 
concentrations of 0.007–11 mg/m3 (Fischbein et al., 1979). Information on the severity or constancy of 
the joint and muscle pain was not reported, physiological testing was not performed, and there was failure 
to distinguish between past and present symptoms. More recent studies of populations exposed to PCBs 
via consumption of contaminated seafood provide preliminary evidence that long-term PCB exposure 
may be associated with developmental defects of tooth enamel (Jan and Reinert, 2008; Jan and Vrbic, 
2000). Studies on the musculoskeletal effects of PCBs in animals include a subchronic oral exposure 
study in growing rats, which reported weaker bones in PCB-exposed animals (Andrews, 1989) and a 
chronic oral exposure study in rats, which reported no histopathologic changes in skeletal muscle with 
PCB exposure up to 11.2 mg/kg-day (Mayes et al., 1998). Since there is very little evidence linking PCB 
exposure to musculoskeletal effects, a systematic review is not planned to evaluate these effects in 
response to PCB exposure. 

 

Neurological Effects 
Neurological effects resulting from PCB exposure in adulthood: Neurological effects of PCB 

exposure in adults have been reported following occupational exposure (Prince et al., 2006; Ruder et al., 
2006; Steenland et al., 2006; Peper et al., 2005; Sinks et al., 1992; Emmett et al., 1988b; Smith et al., 
1982; Fischbein et al., 1979), consumption of contaminated fish and other marine foods (Haase et al., 
2009; Petersen et al., 2008; Koldkjaer et al., 2004; Schantz et al., 2001; Schantz et al., 1999; Schantz et 
al., 1996), or other environmental exposure (Fitzgerald et al., 2008; Corrigan et al., 2000; Corrigan et al., 
1998). Of these exposure routes, the neurological effects of PCB exposure from consumption of 
contaminated fish or marine life are the best-characterized. These dietary exposure studies can be 
organized into two groups: studies that compared results of neuropsychological tests among groups with 
varying levels of PCB exposure (Haase et al., 2009; Schantz et al., 2001; Schantz et al., 1999; Schantz et 
al., 1996); and studies that compared results of neurobehavioral tests and Parkinson’s Disease (PD) 
mortality to healthy controls (Petersen et al., 2008; Koldkjaer et al., 2004).  

Animal studies have reported neurobehavioral effects following subchronic PCB exposure. These 
effects include decreased motor activity, hyperactivity and impulsivity in rats (Berger et al., 2001; Casey 
et al., 1999; Nishida et al., 1997) as well as altered neurotransmitter levels in monkeys (Seegal et al., 
1994, 1992, 1991).  
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Neurological effects in children resulting from prenatal and/or early postnatal PCB exposure: 
There is an extensive database of epidemiological studies evaluating the association between PCB 
exposure during development and neurobehavioral parameters in infants and children. These studies 
include examinations of children following maternal consumption of PCB-contaminated fish and marine 
life (Boucher et al., 2012; Boucher et al., 2010; Plusquellec et al., 2010; Verner et al., 2010; Newman et 
al., 2009; Stewart et al., 2008; Newman et al., 2006; Saint-Amour et al., 2006; Stewart et al., 2006; 
Despres et al., 2005; Stewart et al., 2005; Jacobson and Jacobson, 2003; Stewart et al., 2003b; Stewart et 
al., 2003a; Grandjean et al., 2001; Darvill et al., 2000; Steuerwald et al., 2000; Stewart et al., 2000; 
Jacobson and Jacobson, 1997, 1996; Lonky et al., 1996; Jacobson et al., 1992; Jacobson et al., 1990a, b; 
Jacobson et al., 1985; Fein et al., 1984a; Fein et al., 1984b; Jacobson et al., 1984) as well as studies of 
children following maternal PCB exposure from the general environment (Sagiv et al., 2012; Park et al., 
2010; Sagiv et al., 2010; Pan et al., 2009; Park et al., 2009; Roze et al., 2009; Sagiv et al., 2008; Trnovec 
et al., 2008; Wilhelm et al., 2008b; Wilhelm et al., 2008a; Nakajima et al., 2006; Gray et al., 2005; 
Winneke et al., 2005; Longnecker et al., 2004; Riva et al., 2004; Vreugdenhil et al., 2004; Daniels et al., 
2003; Vreugdenhil et al., 2002b; Vreugdenhil et al., 2002a; Walkowiak et al., 2001; Boersma and 
Lanting, 2000; Patandin et al., 1999; Lanting et al., 1998b; Winneke et al., 1998b; Koopman-Esseboom et 
al., 1996; Huisman et al., 1995b; Huisman et al., 1995a; Gladen and Rogan, 1991; Rogan and Gladen, 
1991; Gladen et al., 1988; Rogan et al., 1986). 

Possible associations between early-life PCB exposure and decrements in neurodevelopment have 
been investigated at different stages of childhood: 

Neonates  
• Neonatal Behavioral Assessment Scale (NBAS) (Sagiv et al., 2008; Stewart et al., 2000; 

Lonky et al., 1996; Rogan et al., 1986; Fein et al., 1984a; Jacobson et al., 1984)  
• Neurological Optimality Score (NOS) (Wilhelm et al., 2008b; Steuerwald et al., 2000; 

Lanting et al., 1998b; Huisman et al., 1995b; Huisman et al., 1995a; Fein et al., 1984a; Fein et 
al., 1984b) 

Infants and toddlers 
• Fagan Test for Infant Intelligence (Darvill et al., 2000; Winneke et al., 1998b; Jacobson et al., 

1985)  
• Bayley Scales of Infant Development (BSID) (Park et al., 2010; Wilhelm et al., 2008b; 

Wilhelm et al., 2008a; Nakajima et al., 2006; Daniels et al., 2003; Walkowiak et al., 2001; 
Boersma and Lanting, 2000; Winneke et al., 1998b; Koopman-Esseboom et al., 1996; Lai et 
al., 1994; Rogan and Gladen, 1991; Gladen et al., 1988) 

Preschoolers and elementary school children 
• McCarthy Scales of Children’s Abilities (Stewart et al., 2003b; Jacobson and Jacobson, 2002; 

Vreugdenhil et al., 2002a; Gladen and Rogan, 1991) 
• Kaufman Assessment Battery for Children (KABC) (Winneke et al., 2005; Walkowiak et al., 

2001; Patandin et al., 1999) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

 
 19  



Scoping and Problem Formulation Materials for PCBs 

• Wechsler Intelligence Scales for Children (WISC) (Roze et al., 2009; Stewart et al., 2008;
Gray et al., 2005; Jacobson and Jacobson, 2003, 2002; Grandjean et al., 2001; Lai et al.,
1994; Chen et al., 1992)

• Wide Range Achievement tests (WRAT) (Jacobson and Jacobson, 2002)
• Woodcock Reading Mastery tests (Newman et al., 2009; Jacobson and Jacobson, 2002)
• Raven’s Progressive Matrices (Newman et al., 2009; Guo et al., 1995)
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Children of elementary school age who were exposed to PCBs prenatally and/or during infancy have also 
been assessed for impairments of executive function (i.e., response inhibition, working memory, 
attentional control, cognitive flexibility, planning, and error monitoring) (Boucher et al., 2012; Sagiv et 
al., 2012; Boucher et al., 2010; Eubig et al., 2010; Verner et al., 2010; Roze et al., 2009; Stewart et al., 
2008; Stewart et al., 2006; Stewart et al., 2005; Vreugdenhil et al., 2004; Jacobson and Jacobson, 2003; 
Stewart et al., 2003a; Vreugdenhil et al., 2002a; Jacobson and Jacobson, 1996; Jacobson et al., 1992; 
Jacobson et al., 1990b). 

Potential effects of PCB exposure on memory and learning functions and auditory processing 
have been evaluated in teenagers (i.e., 13-18 years old) following consumption of contaminated fish 
(Newman et al., 2009; Newman et al., 2006). In this case, the exposure assessment was based on a child’s 
current body burden rather than on prenatal and/or early postnatal exposure metrics. However, for 
neurological endpoints, exposure during adolescence is considered to be a form of developmental 
exposure because human neurodevelopment continues into early adulthood (Adams et al., 2000). 

A number of studies in non-human primates have examined the behavioral effects of prenatal 
and/or postnatal exposure to PCBs (Rice and Hayward, 1999; Rice, 1998, 1997; Rice and Hayward, 1997; 
Schantz et al., 1991; Schantz et al., 1989; Levin et al., 1988; Bowman and Heironimus, 1981; Bowman et 
al., 1981; Bowman et al., 1978). In one series of studies, rhesus monkeys born to dams fed Aroclor 1248 
in their diet were hyperactive at 6 and 12 months of age, even in offspring cohorts conceived after 
cessation of maternal PCB exposure (Bowman et al., 1981; Bowman et al., 1978). When the perinatally-
exposed rhesus monkeys were observed at later time points, the authors reported that the monkeys 
remained hyperactive as juveniles, but were hypoactive as adolescents (Bowman and Heironimus, 1981).  

Another series of reports evaluated long-term neurobehavioral effects in rhesus monkeys 
following perinatal exposure to Aroclor 1016 or Aroclor 1248 (Schantz et al., 1991; Schantz et al., 1989; 
Levin et al., 1988). The Aroclor mixtures were fed to the dams prior to conception, with exposure 
continuing through gestation in one offspring cohort and ending at least 1 year prior to conception in two 
other cohorts (Schantz et al., 1991; Schantz et al., 1989). The offspring were subjected to behavioral tests 
at 14 months and 4-6 years of age, and these tests indicated impaired spatial position discrimination, 
facilitated learning ability for shape discrimination, and significantly impaired spatial alternation 
performance (Schantz et al., 1991; Schantz et al., 1989; Levin et al., 1988). 

A longitudinal series of primate studies on postnatal PCB exposure following a single cohort of 
monkeys over several years was presented by Rice (1998, 1997) and Rice and Hayward (1999, 1997). 
Briefly, male cynomolgus monkeys were dosed from birth to 20 weeks of age with a PCB mixture 
developed to mimic the congener profile found in human milk (Rice and Hayward, 1999; Rice, 1998, 
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1997; Rice and Hayward, 1997). The monkeys were tested for impairment in a variety of neurobehavioral 
tests between 3 and 5 years of age; the results revealed learning deficits, perseverative behavior, and an 
inability to inhibit inappropriate responding (Rice, 1999a). 

Impairments in inhibitory control, similar to those observed in monkeys, have also been observed 
in rats following prenatal and postnatal exposure to a mixture of PCB congeners developed to mimic a 
human PCB exposure from fish (Sable et al., 2009; Sable et al., 2006). Rodent studies have also reported 
other types of neurodevelopmental effects in offspring following prenatal, postnatal, or perinatal PCB 
exposure, including increased brain weight (Roegge et al., 2004; Kaya et al., 2002), ototoxicity (Powers et 
al., 2009; Powers et al., 2006; Crofton et al., 2000a; Crofton et al., 2000b; Goldey and Crofton, 1998; 
Herr et al., 1996; Goldey et al., 1995), memory errors (Yang et al., 2009; Roegge et al., 2000), and 
behavioral alterations (Elnar et al., 2012; Meerts et al., 2004; Widholm et al., 2004; Widholm et al., 2001; 
Lilienthal and Winneke, 1991; Lilienthal et al., 1990; Storm et al., 1981). Furthermore, changes in the 
neurochemistry and electrophysiology of various brain regions have been observed in both monkeys and 
rats exposed to PCB mixtures during development (Meerts et al., 2004; Gilbert et al., 2000; Provost et al., 
1999). 

A further review of information related to PCB exposure and neurological effects will be used to 
determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach. 

Renal Effects 
In general, renal effects have not been observed in humans occupationally exposed to PCBs 

(ATSDR, 2000). Most information on the renal toxicity of PCBs comes from studies in animals. Studies 
in rats exposed to PCBs for a subchronic duration have reported renal tubular degeneration, increased 
kidney weight, biochemical alterations suggestive of functional renal damage, and cortical tubular protein 
cast formation (Gray et al., 1993; Andrews, 1989; Treon et al., 1956). Other studies have reported no 
renal effects in rats, rabbits, guinea pigs or monkeys following subchronic PCB exposure (Street and 
Sharma, 1975; Allen et al., 1974; Bruckner et al., 1974; Vos and de Roij, 1972), or in rats or monkeys 
exposed for a chronic duration (Mayes et al., 1998; Arnold et al., 1997). Since there is very little evidence 
linking PCB exposure to renal effects, a systematic review is not planned to evaluate these effects in 
response to PCB exposure. 

Reproductive Effects 
In humans, PCB exposure has been associated with disrupted reproductive endpoints in both 

women (e.g., endometriosis, reduced fecundability, and miscarriage) (Cohn et al., 2011; Buck Louis et al., 
2009; Porpora et al., 2009; Roya et al., 2009; Tsuchiya et al., 2007; Porpora et al., 2006; Quaranta et al., 
2006; Reddy et al., 2006; Heilier et al., 2005; Law et al., 2005; De Felip et al., 2004; Fierens et al., 2003; 
Sugiura-Ogasawara et al., 2003; Buck et al., 2002; Pauwels et al., 2001; Gerhard et al., 1998; Lebel et al., 
1998; Buck et al., 1997) and men (e.g., reduced sperm quality, conception delay, and infertility) (Cok et 
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al., 2010; Cok et al., 2008; Hauser et al., 2003; Dallinga et al., 2002; Hauser et al., 2002; Buck et al., 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

2000; Buck et al., 1999; Courval et al., 1999; Pines et al., 1987; Bush et al., 1986). 
Studies have also reported reproductive toxicity following exposure to PCBs in adult animals: 

decreased conception in female monkeys and rodents (Arnold et al., 1995; Schantz et al., 1991; Schantz et 
al., 1989; Levin et al., 1988; Welsch, 1985; Brezner et al., 1984; Barsotti et al., 1976; Allen et al., 1974); 
decreased fetal survival in monkeys and mink (Brunström et al., 2001; Bäcklin et al., 1997; Bäcklin and 
Bergman, 1995; Kihlstrom et al., 1992; Aulerich and Ringer, 1977); prolonged estrus, decreased sexual 
receptivity, and decreased implantation in female rodents (Welsch, 1985; Brezner et al., 1984); and 
impaired spermatogenesis and fertility in male rodents (Krishnamoorthy et al., 2007; Faqi et al., 1998; 
Huang et al., 1998b; Gray et al., 1993; Smits-van Prooije et al., 1993; Sager et al., 1991; Sager et al., 
1987; Sager, 1983; Gellert and Wilson, 1979). Hany et al. (1999) and Kaya et al. (2002) exposed female 
rats to 4 mg/kg-day of a mixture of PCB congeners developed to mimic the congener profile found in 
human milk. Exposure began 50 days prior to mating and was terminated at the day of birth (PND 0). The 
offspring continued to be exposed via lactation until PND 21. Adult male offspring of exposed dams had 
reduced relative testes weights and serum testosterone levels long after termination of exposure (Hany et 
al., 1999) as well as a significantly higher saccharin consumption than controls, suggesting a behavioral 
feminization (Kaya et al., 2002; Hany et al., 1999). 

A further review of information related to PCB exposure and reproductive effects will be used to 
determine what questions, if any, on specific endpoints should be addressed using a systematic review 
approach. 

Respiratory Effects 
Effects on the respiratory system have been observed in occupationally-exposed populations. 

Observed effects include upper respiratory tract irritation, cough, tightness of the chest, reduced forced 
vital capacity, and reduced forced expiratory volume (Lawton et al., 1986; Smith et al., 1982; Warshaw et 
al., 1979). The significance of these effects is unclear due to study design issues, including lack of a 
control group (Warshaw et al., 1979), and lack of confirmation by follow-up evaluations (Lawton et al., 
1986). The occurrence of self-reported respiratory effects was not elevated among residents who lived 
within 0.5 mile of three PCB-contaminated waste sites (Stehr-Green et al., 1986b). 

One animal study provides evidence of PCB-induced respiratory effects following oral exposure: 
pulmonary congestion and hemorrhage were reported in pigs exposed to Aroclor 1242 or Aroclor 1254 
for 91 days (Hansen et al., 1976). However, there were no histological alterations in the lungs of rats 
exposed to 50 mg/kg-day PCBs for 3 weeks (Bruckner et al., 1973), to doses up to 11.2 mg/kg-day for 24 
months (Mayes et al., 1998), in mice exposed to 22 mg/kg-day for 6 weeks (Loose et al., 1978a; Loose et 
al., 1978b), or in rhesus monkeys exposed to doses up to 0.080 mg/kg-day for 72 months (Arnold et al., 
1997). Hu et al. (2012) observed “minimal cellular infiltrates and mild degenerative changes” in the nasal 
passages and trachea of female Sprague-Dawley rats exposed via nose-only inhalation to 520 μg/m3 of a 
PCB mixture developed to mimic the congener profile of air in Chicago for an average of 1.6 hours/day, 5 
days/week for 4 weeks. There was no change in the numbers of macrophages, neutrophils, and 
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lymphocytes, total protein, lactate dehydrogenase activity, or cytokine levels in bronchoalveolar lavage 
fluid, and no significant difference in cytochrome P450 (CYP) enzyme activity, total glutathione (GSH) 
level, glutathione disulfide (GSSG) level, or GSSG/GSH ratio in the lungs. Other studies of animals 
exposed to PCBs by inhalation have not provided information on exposure-related respiratory effects 
(
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Casey et al., 1999; Treon et al., 1956). Since there is very little evidence linking PCB exposure by any 
route to respiratory effects, a systematic review is not planned to evaluate these effects in response to 
PCB exposure. 

3.4. Key Issues To Be Addressed in the Assessment 
Impact of Congener Profile on the Toxicity of PCB Mixtures 

Humans are environmentally exposed to PCBs as complex mixtures of congeners. PCB 
congeners differ not only structurally but also qualitatively and quantitatively with respect to biological 
responses. And, there may be important differences between the PCB mixtures administered to laboratory 
animals in toxicological studies and the mixtures that humans are exposed to in the environment. The 
Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures (U.S. EPA, 
2000) recommends several approaches to quantitative health risk assessment of a chemical mixture, 
depending upon the type of available data. The preferred approach is to use toxicity data on the mixture of 
concern. Alternatively, when toxicity data are not available for the mixture of concern, use of toxicity 
data on a “sufficiently similar” mixture is recommended. 

Out of all the possible congener combinations that may exist, a relatively small subset of complex 
PCB mixtures has been tested in animal studies. Most animal studies have administered commercial PCB 
mixtures (e.g., “Aroclors”, including Aroclors 1016, 1242, 1248, 1260, and two distinct types of Aroclor 
1254, one produced prior to 1974, and another produced between 1974 and 1977, which contained a 
much higher concentration of dioxin-like congeners). One disadvantage of these studies is that the 
congener profiles of commercial PCB mixtures do not match those that occur in the environment. Prior to 
human exposure, commercial mixtures in the environment undergo processes such as volatilization and 
preferential bioaccumulation, which dramatically alter a PCB mixture’s congener profile. 

Important relationships exist among congener structure, environmental occurrence, and human 
exposure to PCBs. Oral exposures to PCBs occur primarily via consumption of contaminated foods, 
particularly fish, meat, and poultry. These foods contain mixtures of persistent PCB congeners that have 
been biomagnified through the food chain. Biomagnification of PCBs roughly increases with higher 
congener chlorination; the PCB mixtures most often consumed by humans consist largely of PCBs with 5, 
6, or 7 chlorine substitutions (e.g., PCBs 138, 153 and 180). Exposures to PCBs through dermal (and, to 
some extent, oral) contact with soil may be relatively enriched with the most highly chlorinated congeners 
(i.e., 8–10 chlorine substitutions) because these tend to bind tightly to soil, sediment, and organic matter. 
The prominent PCB congeners found in air samples are not determined by biomagnification but rather by 
volatility and the congener profile of the source material. Volatility is greatest for the lower chlorinated 
congeners (i.e., 1–4 chlorine substitutions); the proportion of these congeners making up an inhalation 
exposure to PCBs may be relatively large compared to what might be found for an oral or dermal 
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exposure. However, inhalation (as well as dermal and oral) exposure to higher chlorinated congeners 1 
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bound to dust may also occur. 
A few studies have utilized mixtures of PCB congeners formulated to mimic an environmental 

exposure (e.g., formulations representing the congeners found in human milk or in contaminated fish or 
soil); for a typical oral exposure, these mixtures may best represent the “mixture of concern.” Thus, these 
studies may be preferred for human health risk assessment because they minimize the uncertainty that 
results from using research on one PCB mixture to assess the risk from exposure to a different mixture. 
However, despite the fact that their congener profiles do not precisely replicate that of an environmental 
PCB mixture, studies administering commercial PCB mixtures have generally observed toxicological 
effects within the same dose range as environmental mixtures. Furthermore, as noted by U.S. EPA (1996), 
commercial PCB mixtures contain overlapping groups of congeners that, together, span the range of 
congeners most frequently found in environmental mixtures. Therefore, commercial PCB mixtures may 
be “sufficiently similar” to environmental mixtures, and animal studies using commercial PCB mixtures 
may be useful to support human health hazard identification and dose-response assessment for PCBs in 
the environment. 

Based on the available data, some key issues EPA will evaluate regarding the impact of congener 
profile on toxicity include the following: 

• Relative toxic potencies of complex PCB mixtures (e.g., environmental and commercial) for various
non-cancer health effects observed in animal studies

• Implications of using toxicological data from a limited set of PCB mixtures for human health risk
assessment in a wide variety of exposure contexts (e.g., breastfeeding infant exposure to PCBs in
human milk, exposure to PCBs from fish consumption, inhalation exposure to PCBs in contaminated
indoor air)

• Considerations when using media-specific data (e.g., soil, groundwater, sediment, fish) collected
using various analytical techniques (e.g., Aroclor analyses, measures of total PCBs, and congener or
isomer analyses) with toxicity information to be provided in the assessment

Evaluation of Epidemiological Studies for PCB Dose-Response Assessment 
Human data are generally preferred over animal data for human health hazard identification and 

dose-response assessment. However, certain study design and methodologic considerations are important 
for determining which human studies, if any, are appropriate for use in an assessment: documentation of 
study design, methods, population characteristics, and results; definition and selection of the study group 
and comparison group; ascertainment of disease or health effect; duration of exposure and follow-up and 
adequacy for assessing the occurrence of effects; sample size and statistical power to detect anticipated 
effects; participation rates and potential for selection bias as a result of the achieved participation rate; 
potential confounding and other sources of bias addressed in the study design or in the analysis of results; 
ascertainment of exposure to the chemical or mixture under consideration; and characterization of 
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exposure during critical periods of development. Of particular concern for epidemiological studies of 1 
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PCBs is the common practice of characterizing exposure using current measures of body burden, often 
relying on a limited number of measured congeners. This approach to exposure assessment may be 
appropriate for some applications, but may be of limited utility for characterizing the extent of human 
PCB exposure and the relationship between exposure and effect: 

(1) Current body burden reflects cumulative exposure to persistent PCB congeners, but only 
recent exposure to labile congeners. The half-life and elimination characteristics of PCB 
congeners vary significantly. And, the relative contributions of less-persistent and more-
persistent PCB congeners to toxicological outcomes are poorly-defined. In recent years, a 
better appreciation has been gained for the full scope of human exposure to PCBs in the 
general environment, including the potential for significant inhalation and dermal 
exposure to lower-chlorinated, less-persistent congeners. Especially given this new 
understanding, it seems likely that, except in cases where the response to an exposure is 
known to occur during a defined period of relatively short duration (e.g., prenatal 
exposure), cross-sectional estimates of body burden may capture only a portion of past 
exposure levels which may have precipitated observed health effects. 

(2) Most current body burden estimates rely on only a subset of PCB congeners selected 
because of their relative occurrence in biological samples and/or the ability to detect them 
using a given analytical method–not because of their biological activity or their potential 
to induce a particular health effect. Again, use of this approach results in an incomplete 
exposure assessment that may easily miss important relationships between exposure and 
effect. 

(3) Even for persistent congeners that are routinely measured in epidemiological studies 
(e.g., PCBs 138, 153 and 180), a current, cross-sectional estimate of body burden may not 
be useful for assessing exposure during a time period critical for the development of a 
particular toxicological outcome (e.g., developmental outcomes known to be sensitive to 
PCB exposure). Depending on the endpoint of concern, the timing of exposure could be 
just as important as the magnitude. It is generally possible to envision several different 
exposure scenarios that could lead to the same current PCB body burden. And, for each 
scenario, although the resulting body burden is the same, the toxicological implications 
could be very different. 

Altogether, these issues may lead to a significant potential for exposure misclassification in 
epidemiological studies of PCBs that rely entirely on measures of body burden for exposure assessment. 
Despite this potential limitation, most cohorts studied have revealed adverse health effects associated with 
PCB exposure, including developmental neurobehavioral outcomes, thyroid hormone disruption, 
immunological effects, and reduced birth weight. These studies provide important evidence for hazard 
identification of human health effects. However, to define the quantitative dose-response relationship 
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between PCBs and associated health effects, EPA will consider certain key issues related to 1 
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epidemiological studies: 

• Importance of specific study design and methodologic aspects for supporting use of epidemiological 
studies to support PCB hazard identificantion and/or dose-response assessment 

• Reliable methods for assessing PCB exposure in humans that provide information sufficient for 
quantifying potential relationships between exposure to environmental PCB mixtures and health 
effects 

• Implications of using studies with incomplete exposure characterizations for dose-response 
assessment 

• Potential for and limitations of using data from toxicological studies in animals, where the source, 
level and timing of exposure are known with greater certainty but some uncertainty is introduced by 
the need for interspecies extrapolation 

Potential for Hazard Identification and Dose-Response Assessment for PCB Exposure Via 
Inhalation 

There is evidence to suggest that PCB inhalation may pose a hazard to human health. 
Hepatotoxic, endocrine, dermal, ocular, immunological, neurological, reproductive and developmental 
effects have been observed in humans following occupational exposures to PCBs (Langer et al., 1998; 
Taylor et al., 1989; Emmett et al., 1988a; Bertazzi et al., 1987; Lawton et al., 1985; Taylor et al., 1984; 
Chase et al., 1982; Fischbein et al., 1982; Smith et al., 1982; Maroni et al., 1981; Fischbein et al., 1979; 
Meigs et al., 1954). Furthermore, thymic atrophy, urinary bladder epithelial hyperplasia and alterations in 
open field behavior have been reported in rats exposed at an air PCB concentration relevant to non-
occupational human environmental exposure levels (Casey et al., 1999). However, the database of studies 
investigating health effects resulting from PCB exposure consists primarily of oral exposure studies. It is 
not clear whether the existing database of inhalation studies will be sufficient to support human health 
risk assessment for inhalation exposure to PCBs. In cases such as this, data from oral exposure studies 
may be considered to support the assessment of human health risk from inhalation exposure, using route-
to-route extrapolation.  This extrapolation is sometimes used for chemicals that are not expected to (1) 
have different toxicity by the oral and inhalation routes, (2) be impacted significantly by first-pass 
metabolism, nor (3) cause respiratory (portal of entry) effects. PCBs may generally meet these criteria; 
however, the congener content of volatilized PCB mixtures is often, but not always, skewed toward 
lower-chlorinated congeners (i.e., those with ≤ 4 chlorine substitutions) compared with the congener 
content of a PCB mixture likely to be present in contaminated fish, human milk, or some of the Aroclor 
mixtures administered in oral exposure studies. It is not clear whether such differences in congener profile 
translate into meaningful differences in toxicity between the two exposure routes (see Impact of Congener 
Profile on the Toxicity of PCB Mixtures).  
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Based on the available data, some key issues EPA will evaluate regarding the potential for hazard 1 
2 

3 
4 
5 

6 
7 
8 

9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

identification and dose-response assessment in the context of PCB inhalation include the following: 

• Availability of information to support hazard identification for PCB inhalation, considering 
differences in toxicity of congeners that are inhaled versus ingested and differences between the 
inhalation and oral exposure routes 

• Potential options for conducting a dose-response assessment for PCB inhalation exposure, including 
the use of data from available PCB inhalation studies, the route-to-route extrapolation from oral PCB 
exposure data, or additional options 

• The availability, evaluation, and further development of PBPK models for reliable route-to-route, 
interspecies, and/or intraspecies extrapolation 

Suitability of Available Toxicokinetic Models for Reliable Route-to-Route, Interspecies, and/or 
Intraspecies Extrapolation 

The absorption, distribution, metabolism, and elimination of PCBs have been studied for a variety 
of individual congeners, a few simple mixtures (e.g., PCB 126+153), and multiple complex PCB mixtures 
(e.g., Aroclors). Studies conducted in humans and animals demonstrate rapid absorption of PCBs by 
inhalation, oral, and dermal routes of exposure. Once absorbed, PCBs enter the circulation and may 
initially accumulate in highly-perfused organs such as the liver, kidney, or spleen although quantitative 
human data on specific organ distribution are not available. Differential accumulation and retention of 
PCBs is related to exposure and the rate of congener metabolism, which generally decreases with 
increasing chlorine substitution (although chlorine position is also important). PCB excretion generally 
requires biotransformation; therefore, PCB congeners with slow rates of metabolism can retain biological 
activity long after exposure stops. As mentioned above, inhalation exposure often favors volatile, lower-
chlorinated PCB congeners, which tend to be metabolized and eliminated more quickly than higher-
chlorinated congeners. On the other hand, oral PCB exposures commonly consist of persistent, higher-
chlorinated congeners that have been biomagnified through the food chain. These highly chlorinated 
congeners tend to have a slow rate of metabolism, and their lipophilicity results in their storage in body 
lipids where they have long elimination half-lives.  

Because this assessment will address non-cancer hazards associated with exposure to complex 
PCB mixtures, EPA intends to evaluate available toxicokinetic models for their ability to predict the dose 
metrics of such mixtures. Lipophilicity, binding to liver proteins (e.g., cytochromes, AhR), and rate of 
elimination (due to metabolism or fecal excretion) are the main determinants of PCB pharmacokinetics. 
Variation of these pharmacokinetic determinants among individual PCBs limits the application of 
congener-specific models in the assessment of a complex PCB mixture. A single set of parameters to 
describe these determinants for the complex mixture may not be justifiable because significant individual 
pharmacokinetic variation has been observed for different PCB congeners. Additionally, possibilities of 
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pharmacokinetic interaction, such as competition at binding sites or synergy in the case of induction of 1 
2 
3 
4 

5 
6 

7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27 
28 

29 
30 

31 
32 
33 
34 

enzymes, may exist between PCB congeners in a complex mixture. 
Based on the available data, some key issues EPA will evaluate regarding the toxicokinetics of 

PCBs include the following: 

• The availability, evaluation, and further development of PBPK models for reliable route-to-route, 
interspecies, and/or intraspecies extrapolation 

• Available information on toxicokinetic differences among PCB congeners and mixtures 

• Available information on inter- and/or intraspecies differences in the toxicokinetics of PCBs, 
including differences across lifestages 

Potential Toxicokinetic Models or Methods to Estimate the Relationship between Continuous Daily 
Maternal PCB Intake and Milk PCB Concentrations in Humans 

PCBs accumulate in body lipids and can be transferred to infants via breast milk, presenting a 
critically important challenge for human health risk assessment. This lactational exposure occurs at higher 
levels and over a shorter time period compared to maternal exposure, which occurs over the long-term 
prior to and during pregnancy and lactation. In addition, because of the relatively small size of a nursing 
infant, this high exposure may lead to PCB levels in blood and tissues of the infant that far exceed those 
in the mother. Offspring can also be exposed to PCBs through transplacental transfer; however, 
lactational transfer of PCBs has been shown to be the major contributor to the body burden of human 
infants (Lackmann et al., 2004; Ayotte et al., 2003; Patandin et al., 1999; Abraham et al., 1998; Lanting et 
al., 1998a; Patandin et al., 1997; Yakushiji et al., 1984). Furthermore, developmental effects have been 
observed in humans and animals exposed to PCBs via lactation (Elnar et al., 2012; Verner et al., 2010; 
Vreugdenhil et al., 2004; Walkowiak et al., 2001; Jacobson et al., 1990a). Therefore, breastfeeding infants 
represent a lifestage and population uniquely susceptible to the adverse health effects of PCBs by virtue 
of both increased exposure and vulnerability to potential disruption of ongoing developmental processes.  

Based on the available data, some key issues EPA will evaluate regarding the lactational transfer 
of PCBs include the following: 

• Available information on the lactational transfer of PCBs and the relationship between long-term 
maternal PCB exposure and consequent exposure in a breastfeeding infant 

• The availability, evaluation, and further development of models or methods that could be used to 
quantitatively predict transfer of PCBs across the placenta or via breast milk 

Putative Mechanisms of PCB Toxicity 
As mentioned above in the context of PCB mixtures, PCB congeners differ not only structurally 

but also qualitatively and quantitatively with respect to biological responses. PCB exposure produces an 
array of toxic effects, likely through multiple and diverse mechanisms. Non-ortho and mono-ortho 
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substituted PCB congeners are often referred to as “dioxin-like” because they, like other dioxin-like 
compounds (e.g., PCDDs and PCDFs), can assume a coplanar molecular configuration and bind to and 
activate the aryl hydrocarbon receptor (AhR) (
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Hansen, 1998; Connor et al., 1995; Safe, 1994). Thus, one 
mechanism for coplanar PCB congener toxicity may be AhR-dependent (Safe, 1994; Safe, 1990; Poland 
and Knutson, 1982). Support for this hypothesis comes from (1) the similarity between PCB effects and 
effects produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and related halogenated 
aromatic hydrocarbons that act through initial AhR mediation, (2) results from in vitro binding studies, 
and (3) results from congener-specific in vivo studies in rodent strains differing in Ah-responsiveness 
(Hori et al., 1997; Safe, 1994; Safe, 1990). 

Because dioxin-like compounds induce certain human health effects by a shared AhR-dependent 
mode of action, the component-based TEF approach has been proposed to evaluate human health hazards 
from complex environmental mixtures containing these toxicants (U.S. EPA, 2010; Van den Berg et al., 
2006; Van den Berg et al., 1998; Safe, 1994; Safe, 1990). The TEF approach compares the relative 
potency of individual congeners, based on in vitro or acute in vivo data, with that of 2,3,7,8-TCDD, the 
best-studied member of this chemical class, so that the TEF for 2,3,7,8-TCDD is 1. The concentration of 
each PCB congener is multiplied by that congener’s TEF to determine a TEQ; then, the congener TEQs 
are summed to give the total toxic equivalency of the mixture. The mixture TEQ is compared with 
reference exposure levels for 2,3,7,8-TCDD to estimate human health hazard. TEFs have been 
recommended by the World Health Organization for the following PCB congeners: PCB 77, 81, 105, 114, 
118, 123, 126, 156, 157, 167, 169 and 189 (Van den Berg et al., 2006). 

Although the TEF approach can be very useful for quantifying the potential hazards associated 
with exposure to dioxin-like compounds, its application to the assessment of hazard from complex PCB 
mixtures is limited for a number of reasons. Evidence suggests that the most potent dioxin-like PCB 
congeners are minor components in environmental PCB mixtures (Hansen, 1998; Safe, 1998b; Safe, 
1998a), and there is evidence that several AhR-independent mechanisms may contribute to PCB toxicity 
(Kodavanti et al., 2005; Chauhan et al., 2000; Cheek et al., 1999; Mariussen et al., 1999; Fischer et al., 
1998; Hansen, 1998; Tilson et al., 1998; Tilson and Kodavanti, 1998; Kodavanti and Tilson, 1997; Tilson 
and Kodavanti, 1997; Wong and Pessah, 1997; Wong et al., 1997; Seegal, 1996; Wong and Pessah, 1996; 
Brown and Ganey, 1995; Tithof et al., 1995; Safe, 1994; Ganey et al., 1993; Harper et al., 1993b; Harper 
et al., 1993a; Shain et al., 1991; Seegal et al., 1990; Seegal et al., 1989). The following discussion 
describes proposed modes of action, both AhR-dependent and –independent, through which exposure to 
PCB mixtures may induce various non-cancer health effects. 

Hepatic effects 
PCBs induce hepatic Phase I (CYP oxygenases) and Phase II (e.g., UDP glucuronyltransferases, 

epoxide hydrolase, or glutathione transferase) enzyme levels to varying degrees and specificities (Hansen, 
1998). According to the results of structure activity studies, CYP1A induction occurs as a result of 
activation of the aryl hydrocarbon receptor (AhR) by dioxin-like non-ortho PCB congeners while 
induction of the phenobarbital-type CYPs (i.e., CYP2B1, 2B2, and 3A) is AhR-independent (van der 
Burght et al., 1999; Hansen, 1998; Schuetz et al., 1998; Connor et al., 1995; Safe, 1994; Schuetz et al., 
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1986). Porphyria and porphyria cutanea tardea are additional hepatic effects of PCB exposure that may 
involve AhR activation (
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Franklin et al., 1997; Smith et al., 1990a; Smith et al., 1990b) while liver 
hypertrophy and pathology may involve both AhR-dependent and AhR-independent mechanisms (NTP, 
2006a, b; Hori et al., 1997). 

Effects on Thyroid Hormone Homeostasis 
ATSDR (2000) proposed several modes of action through which PCBs may disrupt the 

production and disposition of thyroid hormones: (1) disruption of thyroid hormone production, both in the 
thyroid and in peripheral tissues; (2) interference with thyroid hormone transport to peripheral tissues; and 
(3) acceleration of the metabolic clearance of thyroid hormones. Studies that have shown depressed levels 
of adrenal cortical steroids in PCB-exposed animals (Byrne et al., 1988) may also be relevant to PCB-
induced hypothyroidism because depressed levels of adrenal steroids have been associated with 
hypothyroidism in humans (Dluhy, 2000). In hypothyroidism, this effect is thought to result from 
decreases in both secretion and metabolism of adrenal steroids. 

PCB-induced effects on thyroid hormone homeostasis may be the result of a combination of 
AhR-dependent and AhR-independent mechanisms. Induction of UDP-GT and resulting metabolic 
elimination of T4 is an example of an AhR-dependent mechanism of thyroid hormone disruption 
(McLanahan et al., 2007; Desaulniers et al., 1997; Van Birgelen et al., 1995); however, PCBs can affect 
serum T4 levels independent of both AhR activation and UDP-GT induction (Li and Hansen, 1996). 
Decreased binding of thyroid hormones to transthyretin is an example of an AhR-independent mechanism 
of thyroid hormone disruption (Chauhan et al., 2000; Cheek et al., 1999; Darnerud et al., 1996). 
Transthyretin is an important transport protein for both T4 and T3. Inhibition of thyroid hormone binding 
to transthryetin may alter hormone delivery to target tissues and depress levels of serum total T4 or T3 
(Brouwer et al., 1998). 

Immunological effects 
Harper et al. (1995) compared the potencies of nine PCB congeners (PCBs 77, 105, 118, 126, 

156, 169, 170, 180, 189) with respect to their abilities to reduce splenic PFC and antibody responses to 
trinitrophenyl-lipopolysaccharide (TNP-LPS) in mice. They also compared the potencies of these 
congeners with those of TCDD and Aroclors 1260, 1254, 1248, and 1242. The results showed that the 
non-ortho PCB congeners (PCBs 77, 126, 169) were far more potent immunotoxicants than the mono- or 
di-ortho congeners. Furthermore, there is evidence that non-dioxin-like PCB congeners antagonize the 
immunotoxic effects of dioxin-like PCB congeners (Zhao et al., 1997; Harper et al., 1995). Such 
antagonism may explain the observation by Harper et al. (1995) that a TEF approach based on the relative 
abilities of individual congeners to inhibit the splenic PFC and antibody response to TNP-LPS 
overestimated the immunotoxicity of common commercial PCB mixtures, which contain a large 
proportion of non-dioxin-like congeners. 

Despite extensive documentation of AhR-dependent immunosuppression, other mechanisms may 
also contribute to PCB-induced immunological effects (Stack et al., 1999; Harper et al., 1993b; Harper et 
al., 1993a). Studies measuring the splenic PFC response to SRBCs have reported higher immunotoxic 
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potencies in this assay for three nonachlorobiphenyls (PCBs 206, 207 and 208) and decachlorobiphenyl 
PCB 209 than for three hexachlorobiphenyls (PCBs 153, 154 and 155) (
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Harper et al., 1993b). All of these 
congeners contain multiple ortho chlorines, and none are effective AhR agonists. These results are 
consistent with the hypothesis that some PCBs induce immunotoxicity via AhR-independent mechanisms. 

Neurological effects 
According to the available evidence, PCB exposure could result in neurological effects through a 

variety of mechanisms including (1) reduction of dopamine levels, (2) disruption of intracellular calcium 
homeostasis, and (3) thyroid hormone disruption. In vitro studies have reported decreased cellular levels 
of dopamine in pheochromocytoma cells cultured with PCBs (Seegal et al., 1989). In this in vitro system, 
the most active PCB congeners, PCBs 48, 50, and 52, had at least two ortho chlorines; dioxin-like 
congeners, PCBs 77 and 126, had minimal effects on dopamine levels (Shain et al., 1991). In vivo studies 
in adult primates have reported decreased dopamine concentrations in four regions of the brain: the 
caudate, putamen, substantia nigra, and hypothalamus (Seegal et al., 1990). Gas chromatographic analysis 
of samples from these brain regions identified only three PCB congeners, PCBs 28, 47, and 52, and these 
congeners are poor AhR agonists. Thus, the observed reduction in dopamine levels occurred in the 
absence of AhR activation. Reduction in dopamine levels following PCB exposure has been postulated to 
involve decreased dopamine synthesis via direct or indirect PCB inhibition of tyrosine hydroxylase 
(Choksi et al., 1997; Seegal, 1996) or L-aromatic amino acid decarboxylase (Angus et al., 1997). 
Alternatively, dopamine levels may be reduced by PCB inhibition of vesicular uptake of dopamine 
(Mariussen et al., 1999).  

Another proposed mechanism for the neurological effects of PCB exposure involves disrupted 
signal transduction resulting from altered intracellular calcium homeostasis (Kodavanti et al., 2005; 
Tilson et al., 1998; 1998; Kodavanti and Tilson, 1997; Tilson and Kodavanti, 1997; Wong and Pessah, 
1997; Wong et al., 1997; Wong and Pessah, 1996). Similar to the structure-activity relationships reported 
for PCB effects on dopamine levels (Shain et al., 1991), non-dioxin-like PCB congeners interfered with 
calcium homeostasis and second messenger systems to a greater extent than dioxin-like PCB congeners 
(Kodavanti et al., 2005; Kodavanti et al., 1998; Tilson et al., 1998; Kodavanti and Tilson, 1997; 
Kodavanti et al., 1996, 1995; Safe, 1994; Kodavanti et al., 1993).  

As shown by in vitro studies, PCBs may disrupt intracellular calcium homeostasis by (1) altering 
Ca2+ sequestration by microsomes and mitochondria (Kodavanti et al., 1996), and/or (2) altering the 
function of ryanodine receptor-mediated Ca2+ channels (RyRs) (Schantz et al., 1997; Wong and Pessah, 
1997; Wong et al., 1997; Wong and Pessah, 1996). In structure activity studies of ryanodine binding in 
the presence of selected pentachlorobiphenyls, ortho PCB congeners favored binding, non-ortho 
congeners did not, and para substitution was found to decrease RyR binding activity regardless of the 
pattern of ortho substitution (Pessah et al., 2010; Wong and Pessah, 1996). In another study using 
hippocampal slices of rat brains, perfusion with ortho congener PCB 95 both enhanced ryanodine binding 
and inhibited electrophysiological responses to electrical pulse stimulations (Wong et al., 1997). 
Conversely, perfusion with mono-ortho congener PCB 66 neither enhanced ryanodine binding nor 
inhibited electrophysiological responses to stimulation (Wong et al., 1997). Ryanodine binding to calcium 
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channels was also altered in the offspring of rats exposed to PCB 95 (8 or 32 mg/kg-day) by gavage on 
gestation days 10–16. These offspring displayed decreased ryanodine binding to calcium channels in the 
hippocampus and increased ryanodine binding in the cerebral cortex (
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Schantz et al., 1997). 
Dynamic changes in intracellular Ca2+ concentrations, such as those mediated by RyR activity, 

contribute to critical determinants of neuronal connectivity, including neuronal excitability, dendritic 
synaptic plasticity, cell proliferation, cell differentiation, cell movement, and apoptosis (Zheng and Poo, 
2007; Moody and Bosma, 2005; Spitzer et al., 2004; Cline, 2001; Martin, 2001; Segal, 2001; Barone et 
al., 2000; Kennedy, 2000; Matus, 2000; Sastry and Rao, 2000; Balschun et al., 1999; Korkotian and 
Segal, 1999; Berridge, 1998). In vitro studies have shown that PCBs can affect some of these processes 
through RyR activation. PCB 95, a congener with potent RyR activity, promoted dendritic growth in 
primary cortical neuron cultures, and this effect was blocked by pharmacological antagonism of RyR 
activity (Yang et al., 2009). However, dendritic growth was not promoted by PCB 66, a congener with 
negligible RyR activity, PCBs have also been shown to induce apoptosis in cultured neurons; this 
proapoptotic activity was inhibited by a selective RyR antagonist (Mack et al., 1992; Chiesi et al., 1988). 

A third potential mechanism for the developmental neurological effects of PCB exposure is 
disruption of thyroid hormone homeostasis. As shown by studies in animals, gestational and/or lactational 
exposure to PCBs depletes levels of circulating thyroid hormone in the fetus or neonate (Zoeller et al., 
2000; Provost et al., 1999; Rice, 1999b; Li et al., 1998; Schuur et al., 1998; Cooke et al., 1996; Corey et 
al., 1996; Darnerud et al., 1996; Morse et al., 1996; Goldey et al., 1995; Seo and Meserve, 1995; Juarez 
de Ku et al., 1994; Collins and Capen, 1980). Developmental effects of PCBs on thyroid hormone 
homeostasis have been mechanistically linked to some neurodevelopmental effects (Gerstenberger and 
Tripoli, 2001; Goldey and Crofton, 1998). Thyroid hormones regulate essential developmental processes 
such as cell proliferation, cell migration, and differentiation. During critical developmental periods, 
proper thyroid balance is essential for normal development of the brain (Porterfield and Hendry, 1998). 
Therefore, to the extent that PCB-induced thyroid hormone disruption is an AhR-dependent effect, some 
of the neurodevelopmental outcomes occurring downstream of PCB-induced thyroid hormone disruption 
could also be AhR-dependent. However, as discussed above, structure-activity studies in rats have shown 
that the effects of PCBs on thyroid hormone homeostasis may occur via both AhR-dependent and AhR-
independent mechanisms. 

In summary, structure activity relationships have been elucidated for two of the hypothesized 
modes of action for the neurological and/or neurodevelopmental effects of PCB exposure: reduced 
neurotransmitter levels and altered intracellular signaling processes. Non-dioxin-like PCB congeners have 
been shown to be more effective than dioxin-like congeners at both reducing dopamine levels and 
disrupting calcium homeostasis (Kodavanti et al., 1996, 1995; Shain et al., 1991). Therefore, AhR-
independent mechanisms may play an important role in PCB-induced neurological and 
neurodevelopmental toxicity. 

Reproductive effects 
Both human and animal studies have reported reproductive effects following PCB exposure, and 

PCB reproductive toxicity may be mediated by multiple molecular pathways. The reproductive effects of 
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PCB exposure may result from altered endocrine function, including possible estrogenic or anti-1 
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estrogenic activities and disrupted thyroid hormone homeostasis. Available structure-activity data support 
both AhR-dependent and AhR-independent pathways for the reproductive effects of PCB exposure. 
Adding to this mechanistic complexity, there is evidence to suggest that at least some of the reproductive 
effects of PCB exposure are mediated by hydroxylated PCB metabolites. 

The estrogenic and anti-estrogenic activities of some commercial PCB mixtures, individual 
congeners, and hydroxylated metabolites have been assayed using a variety of test systems, both in vivo 
and in vitro (Andersson et al., 1999; Arcaro et al., 1999; Hansen, 1998; Connor et al., 1997; Gierthy et al., 
1997; Kramer et al., 1997; Li and Hansen, 1997; Moore et al., 1997; Nesaretnam et al., 1996; Battershill, 
1994; Krishnan and Safe, 1993; Astroff and Safe, 1990; Korach et al., 1988). These studies have observed 
a variety of responses across types of PCBs and assays, indicating that the estrogenic or anti-estrogenic 
activities of PCBs may occur through direct binding to the estrogen receptor or by alternative 
mechanisms, such as inhibition of hydroxy steroid sulfotransferase, which may result in inhibition of 
estradiol metabolism and indirect estrogenic activity (Kester et al., 2000). Structure-activity relationships 
are not well defined for estrogenic or anti-estrogenic activities of PCB congeners or their metabolites 
(Connor et al., 1997; Moore et al., 1997; Nesaretnam et al., 1996); these effects of PCB exposure may 
occur through a combination of AhR-dependent and AhR-independent mechanisms. 

Another potential mechanism for the reproductive effects of PCB exposure is disruption of 
thyroid hormone homeostasis. As mentioned above, gestational and/or lactational exposure to PCBs has 
been shown to deplete levels of circulating thyroid hormone in animal offspring. Developmental effects 
of PCBs on thyroid hormone homeostasis have been mechanistically linked to downstream 
developmental effects on reproduction (Baldridge et al., 2003; Cooke et al., 1996). Thyroid hormones 
regulate essential developmental processes such as cell proliferation, cell migration, and differentiation. 
During critical developmental periods, proper thyroid balance is essential for normal development of male 
and female reproductive organs (Dijkstra et al., 1996; Cooke and Meisami, 1991; Cooke et al., 1991). As 
discussed above, mechanistic studies of PCB-mediated thyroid hormone disruption have provided 
evidence for both AhR-dependent and AhR-independent mechanisms.  

 
Based on the available data, some key issues EPA will evaluate regarding the modes of action of 

PCB toxicity include the following: 

• The relevance of proposed mechanisms of PCB toxicity observed in vitro to health effects observed 
with in vivo PCB exposure   

• The relative contributions of dioxin-like and non-dioxin-like activities to the toxicity of PCB mixtures 
for each health effect 

• How an understanding of the relative contributions of dioxin-like and non-dioxin-like activities might 
inform the use of this new PCB assessment in conjunction with U.S. EPA’s guidance for human 
health risk assessments of 2,3,7,8-TCDD and dioxin-like compounds (U.S. EPA, 2012, 2010). 
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• The availability, evaluation, and further development of relative potency factors that could be used to 1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

inform human health risk assessment of PCB-induced neurodevelopmental, reproductive, or other 
non-cancer effects  

Factors Influencing Human Susceptibility 
Numerous studies have investigated the effects of exposure to PCBs in newborn and young 

children. The main focus of these studies has been the evaluation of neurobehavioral effects, but 
information on other end points is also available, including anthropometric measures at birth, growth rate, 
immunocompetence, and thyroid hormone status. Vulnerability to developmental effects together with the 
potential for elevated early life exposure to PCBs from breastfeeding identifies human infants and young 
children as a population that may be particularly susceptible to PCB-induced health effects. Early life 
susceptibility has already been discussed above in the context of PCB exposure and toxicokinetics. No 
other potential susceptibility factors have been identified for the toxic effects of PCBs. 
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