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Surface coal mining (SCM) has undergone dramatic changes in the last 30 years. Large-scale SCM practices
are at the center of an environmental and legal controversy that has spawned lawsuits and major environ-
mental investigations. SCM techniques extract multiple coal seams by removing an area of many square ki-
lometers and creating serious environmental problems. Information about mining activities location is
essential for environmental applications, specifically the temporal and spatial patterns of land cover/land
Keywords: use change (LCLUC). Advancements in satellite imagery analysis provide possibilities to investigate new ap-
MESMA proaches for LCLUC detection caused by SCM globally. However there is no study that analyzes the changes
SMA produced for SCM at a global scale. Our work examines three areas of coal extraction in the world: Spain,
Surface coal mining United States of America (USA), and Australia. We used Multiple Endmember Spectral Mixture Analysis
Landsat (MESMA) applied to Landsat Thematic Mapper (TM) data to map SCM affected area. Endmember spectra
of vegetation, soil, and impervious surfaces were collected from the Landsat TM image with the help of a
fine resolution orthophotographs and the pixel purity index (PPI). Reference endmembers from an Airborne
Visible-Infrared Imaging Spectrometer (AVIRIS) spectral library were utilized as well. An unsupervised clas-
sifier was applied to the fraction images to obtain an estimation of active SCM affected area. Classification ac-
curacy was reported using error matrixes and k statistic using active SCM affected area perimeters digitized
from fine resolution orthophotographs as reference data. In addition, we compared the accuracy of the
MESMA based estimation to estimates using Spectral Mixture Analysis (SMA), and a spectral index tradition-
ally used as Normalized Difference Vegetation Index (NDVI) testing statistical significance using a Z-test of
their k statistics. Results showed a significant improvement in the accuracy of the SCM affected area using
MESMA with an average increase of the k statistic of 31%. We conclude that MESMA-based approach is effec-
tive in mapping SCM active affected area.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Mining, in general, and surface mining in particular may lead to
severe environmental degradation. From an environmental point of
view, surface coal mining (SCM) is a transforming activity with a
high number of detrimental consequences, namely soil erosion,
acid-mine drainage and increased sediment load as a result of aban-
doned and un-reclaimed mined lands (Parks et al., 1987). Over
6185 million tonnes (Mt) of hard coal is currently produced world-
wide and 1042 Mt of brown coal/lignite. The largest coal producing
countries are not confined to one region — the top five hard coal pro-
ducers are China, the United States of America (USA), India, Australia
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and South Africa (World Coal Association, 2005). For example, surface
mining accounts for around 80% of production in Australia; while in the
USA it accounts for about 67% of production (International Energy
Agency, 2011). These data indicate the importance of surface mining
in the global production of coal.

SCM activity has important social, economic, political and envi-
ronmental impacts on both local and global scale. At local scale
many studies (e.g. Garcia-Criado et al., 1999; Kennedy et al., 2003;
Pond et al., 2008) have shown that coal mining activities negatively
affect stream biota in nearly all parts of the globe. For example,
Bernhardt and Palmer (2011) and Palmer et al. (2010) showed that
the aquatic ecosystems of the Central Appalachians (USA) suffered
water-quality degradation associated with acidic coal mine drainage
as the sediments resulting from SCM (specifically mountain top re-
moval), and chemical pollutants transmitted downstream through
the river networks of the region. Similarly, Connor et al. (2004)
showed a marked loss of biodiversity and water quality, as well as in-
creased erosion, salinity, and siltation rates in large sections of the
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Upper Hunter Valley (New South Wales, Australia). At the global
scale, the cumulative effect of significantly increasing coal extraction
has serious implications for global warming and climate change,
regarded as the most challenging environmental issue confronting
the global community in the twenty first century. Methane, an im-
portant greenhouse gas contributing to global warming (Wuebbles
& Hayhoe, 2002), appears naturally during the coal extraction pro-
cess. In addition, generation of electricity and heat is the largest pro-
ducer of CO, emissions, being responsible for 41% of the world CO,
emissions in 2009 (International Energy Agency, 2011; United
States Energy Information Administration, 2011). Worldwide, this
sector relies heavily on coal, the most carbon-intensive of fossil
fuels, amplifying its share in global emissions. Coal is widely used as
a natural fuel and provides more than half the electricity consumed in
USA. Countries such as Australia, China, India, Poland and South Africa
produce between 68% and 94% of their electricity and heat through
the combustion of coal (International Energy Agency, 2011).

Quantification of the effects that mining activities have on eco-
systems is a major issue in sustainable development and resources
management (Latifovic et al., 2005). Generating an environmental
database for carrying out environmental SCM impact assessment is
a difficult task by conventional methods. Due to its synoptic coverage
and repetitive data acquisition capabilities, remote sensing has be-
come an effective alternative to conventional methods for monitoring
SCM. Compared to other environmental land cover changes studies,
such as forest fires, fewer studies (e.g. Lévesque & Staenz, 2008;
Rathore & Wright, 1993; Schmidt & Glaesser, 1998; Schroeter, 2011)
have evaluated the potential of remote sensing for monitoring envi-
ronmental impacts in mining areas. Moreover, fewer studies have ex-
amined the use of remote sensing to map surface mines. An exception
is the review by Slonecker and Benger (2002) regarding remote sens-
ing research on surface mining. Another is a summary by Erener
(2011) who provides a comprehensive list of remote sensing applica-
tions, including utility in: mapping surface mine extent through time
(Prakash & Gupta, 1998; Townsend et al., 2009; Wen-bo et al., 2008);
detecting and monitoring coal fires (Mansor et al., 1994; Martha et al.,
2010; Voigt et al., 2004); monitoring environmental impacts of SCM
(Charou et al., 2010; Haruna & Salomon, 2011; Schmidt & Glaesser,
1998); discriminating mined areas and mapping industrial open pit
mines (Fernandez-Manso et al., 2005; Nuray et al.,, 2011; Richter et
al., 2008; Wright & Stow, 1999) and mapping of mine reclamation
(Erener, 2011; Straker et al., 2004; Townsend et al., 2009).

Most of these studies were based on the use of Landsat Thematic
Mapper (TM) data (e.g. Schmidt & Glaesser, 1998; Toren & Unal,
2001; Townsend et al., 2009), although other data have been used.
For example, Charou et al. (2010) based their study on Advanced
Spaceborne Thermal Emission and Reflection (ASTER) data; Mars
and Crowley (2003) mapped mines wastes using the Airborne
Visible-Infrared Imaging Spectrometer (AVIRIS) imagery; and Ellis
and Scott (2004) used Hymap data. Original bands and vegetation
indexes have been widely used (Latifovic et al., 2005; Martha et al.,
2010; Prakash & Gupta, 1998; Shank, 2008; Wen-bo et al., 2008).
There are, however, some studies based on different techniques.
Townsend et al. (2009) studied the changes in the extent of surface
mining and reclamation in the Central Appalachians using Support
Vector Machine (SVM); and Charou et al. (2010) assessed the im-
pact of mining activities by using Artificial Neural Networks (ANN)
to classify remotely sensed data. Spectral Mixture Analysis (SMA)
was employed by several authors including Ferndndez-Manso et al.
(2005), who mapped forest cover changes caused by mining activi-
ties, Lévesque and Staenz (2008) who monitored mine tailings
re-vegetation using multitemporal hyperspectral image, Richter et
al. (2008) who quantified the rehabilitation process in mine tailing
areas and Shang et al. (2009) characterized mine tailings.

Simple SMA provides an estimate of the proportions of different
basic land cover types within a mixed pixel by using a fixed suite of

endmembers for the decomposition of all pixels. However, within
class spectral variability, and pixel-to-pixel variability in the number
of endmembers required to unmix a pixel can cause large errors in
the estimated fractional cover using simple SMA. Multiple end-
member SMA (MESMA) (Roberts et al., 1998) decomposes each
pixel using different combinations of possible endmembers, al-
lowing a large number of endmembers to be utilized across a scene
and of the number of endmembers to vary between pixels. For a
given mixed pixel, too many endmembers may overfit the data yield-
ing an unstable solution, while too few endmembers results in large
residuals with the fraction of an unmodeled component partitioned
into the fraction estimate of the selected endmembers (Li et al.,
2005). MESMA assumes that although an image contains a large
number of spectrally distinct components, individual pixels contain
a limited subset of these.

Given the advantages of MESMA over SMA, our study aims to use
MESMA to map SCM affected area (SCMAA) using Landsat. We de-
fine SCMAA as the active mining area plus non-reclaimed areas.
Reclaimed areas are not included in this definition of ‘affected
area’. We compare the accuracy of the SCMAA estimation obtained
using MESMA to the accuracy of SCMAA estimation based on more
traditional methods including simple SMA and spectral indexes. Sta-
tistical significance is evaluated by means of Z-test of their « statis-
tics. We are unaware of any study that has used MESMA to analyze
SCMAA. The most similar study is by Bedini et al. (2009) who ap-
plied MESMA to Hymap imaging spectrometer data to map mineral-
ogy in the Rodalquilar caldera (Spain). Moreover, our work has the
potential to be applied to different world forest ecosystems. We con-
sider three study areas located in three countries, the USA, Australia
and Spain. Again, we could not find any study about SCMAA map-
ping in three different continents, so we believe that our study is
the first study of this type. Specifically, the objectives of the study
are: 1) to evaluate the potential of MESMA in the discriminating of
mining activities using Landsat TM images; and 2) to map accurately
the areas affected by SCM exploitations.

2. Materials and methods
2.1. Study areas

We performed a full analysis of the main SCM areas globally be-
fore selecting our study areas. The analysis was based on the
InfoMine international data base (www.infomine.com) where min-
ing activity is collected worldwide. The criteria used to select the
study areas were to choose areas where SCM affected areas had
high environmental value (mainly forests) and where environmen-
tal impacts have been greater. Additionally, we took into account
the availability of cloud-free Landsat-5 TM images. We considered
initially six potential study areas: El Bierzo (Castilla y Leén —
Spain), Eastern Kentucky (USA), Upper Hunter Valley (New South
Wales — Australia), Jharia (India), Seyitomer (Turkey), and Witbank
(South Africa), though only the first three areas were ultimately
selected: (Fig. 1, Table 1).

El Bierzo county (Spain) is in a sheltered mountain valley on the
Northwestern boundary of the province of Ledn, in the autonomous
region of Castilla y Leén (Spain), and defined by longitude —6.64 E
and latitude 42.99 N. Elevation ranges between 660 and 1900 m.
Mean annual rainfall is 1500 mm and temperatures range from a
summer high of 32 °C to a winter low of 1 °C with a year-round av-
erage of 10 °C (AEMET, 2011). El Bierzo has 6 mines currently in op-
eration (3 open cut; 3 underground), and produced a total of 5 Mt of
raw coal (anthracite) in 2009 (Spanish Ministry of Industry, Tourism
and Business, 2009). The main vegetation cover is Atlantic oak forest
(Quercus sp.) and scrub (Erica sp.).

The second study area, the Eastern Kentucky Coalfield Region,
covers 31 counties with a combined land area of 35 km. It is part of
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Fig. 1. Study areas location.

a larger physiographic region called the Cumberland Plateau. This
escarpment is formed from resistant Pennsylvanian-age sandstones
and conglomerates. The area is dominated by forested hills and
highly dissected by V-shaped valleys (350 m average elevation
range). In general, the elevations of the hills are highest in southeast-
ern Kentucky where the highest elevation, 1263 m (before mining),
was at Black Mountain. The majority of the mature forests are popu-
lated by oaks (Quercus spp.) including both white and red oaks.
However, yellow-poplar (Liriodendron tulipifera), is also an extreme-
ly important timber species. Other important species are hard maple
(Acer saccharum and Acer nigrum) and ash (Fraxinus spp.). Bitu-
minous coal deposits in the eastern coal field are lower in sulfur con-
tent, averaging between 1 and 2 percent by weight. By 2010, 44.2 Mt
of coal were extracted from Kentucky Eastern Coalfield (Department
for Energy Development and Independence, 2010).

Our third study area, the Upper Hunter Valley region, is situated
in rural New South Wales (NSW), in southeastern Australia, approx-
imately 200 km northeast of Sydney. Over the last three decades,
coal mining, energy production and associated businesses have be-
come major industries in this region. The Upper Hunter has 19
mines currently in operation (12 open cut; 4 underground; 3 both
open cut and underground), and produced a total of 106.87 Mt of
raw coal in 2008. This represents around two thirds of total coal pro-
duction for NSW and 40% of total Australian black coal production
(Minerals Council of Australia, 2010). The valley has a variable cli-
mate depending on elevation and proximity to the coast. Coastal
areas and the area around the Barrington Tops receive the highest

rainfall of around 1140 mm per year, with rainfall decreasing with
distance inland. Rainfall at Muswellbrook averages 640 mm per
year, with December and January the wettest months. The climate
of the upper Hunter catchment is characterized by hot summers, av-
eraging about 30 °C in January, with periods of humid, stormy con-
ditions; winters are cool to mild and dry. Temperature extremes
tend to be highest in the west of the catchment. Dry Sclerophyll for-
ests are the main vegetation cover. This forest is a woodland of
15-20 m tall (Eucalyptus sp.), mixed with an open to sparse sclerophyll
shrub stratum (Acacia sp.) and open groundcover of tussock grasses
(Thomas et al., 2000).

2.2. Remotely sensed data

Three Landsat-5 TM scenes downloaded from US Geological Survey
(USGS) (www.glovis.usgs.gov) were used. All of the images had an L1G
level of processing (systematic correction), which implies that the data
product provides systematic radiometric and geometric accuracy, and
that the scene is rotated, aligned, and geo-referenced to the UTM map
projection. Table 2 shows the main characteristics of each scene.

2.3. Ancillary geospatial data

Several ancillary data were used in the different stages of the
methodology. The ASTER Global Digital Elevation Model Version 2
(GDEM V2), provided by USGS, was employed to perform topo-
graphic normalization of the Landsat TM images. Fine resolution

Table 1

Summary of the main characteristics of potential study areas (*: definitively selected study areas).
Country State Region Elevation (average) (m) Forest Ecosystem AAR (mm) AAT (°C) Coal type ACP (Mt)
* Spain Castilla y Le6n El Bierzo, 660-1900 (1300) Atlantic oak forests 1500 10 Anthracite 5.0
*USA Kentucky Eastern Kentucky 250-1300 (350) Mixed mesophytic Appalachian aak 1200 13 Bituminous ~ 44.2
* Australia New South Wales Upper Hunter Valley 20-625 (250) Dry sclerophyll forests 900 16 Lignite 106.9
India Jharkhand Jharia Dhanbad 100-400 (225) Subtropical dry sessional forest 1300 23 Bituminous  85.0
Turkey Kiitahya Seyitomer 1000-1300 (1100) Temperate forests 500 13 Lignite 7.0
South Africa Mpumalanga Witbank 300-800 (500) Subtropical grasslands and sabannas 610 18 Bituminous 174.0

Note: AAR: Annual average rainfall; AAT: Annual average temperature; ACP: Annual coal production.
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orthophotographs were used to validate the SCMAA estimations.
Specifically, we used 50 cm orthophotographs, acquired during mid-
summer 2010 provided by the Spanish National Center of Geograph-
ic Information (CNIG; http://www.cnig.es/) through the Spanish
Aerial Ortho-photography National Planning (PNOA) in the Spanish
study area. For the Kentucky study area, we used 1 m true color
orthophotographs, acquired during 2007 midsummer, and provided
by the National Agriculture Imagery Program (NAIP). Finally, 1 m
spatial resolution orthophotographs acquired during 2010 summer
were used in the Australian study area, provided by the New South
Wales Natural Resource Atlas (http://www.nratlas.nsw.gov.au/).

Additionally, a 2007 3.5 m spatial resolution AVIRIS image of the
University of California, Santa Barbara, was used as a source of im-
pervious and soil spectra. All AVIRIS spectra were extracted from re-
flectance images atmospherically corrected using Modtran radiative
transfer code and a ground reference target (see Herold et al., 2004;
Roberts et al., 2012).

2.4. Methods

The methodology involved three parallel image analysis techniques:
MESMA, SMA and vegetation indexes (Fig. 2). Prior to image analysis,
the Landsat-5 TM images were pre-processed, including image
subsetting, topographic normalization and atmospheric correction.
After the creation of a spectral library, we applied the SMA and
MESMA algorithms to obtain the image fractions. Both the images frac-
tions and the vegetation indices were classified using ISODATA to esti-
mate the SCMAA. Accuracy of all SCMAA estimations was computed
using an error matrix and k statistic. A Z-test allowed us to evaluate
whether accuracy difference were statistically significant between
approaches.

2.4.1. Pre-processing

First of all, the scenes were subset to the selected study areas.
Table 2 shows the size (average size equals aprox. 1700 km?) and
latitude/longitude coordinates of each subset. The subset images
were co-registered to the orthophotographs using nearest-neighbor
resampling, resulting in a mis-registration error between the TM im-
ages and orthophotographs below one quarter of a TM pixel. After the
co-registration, the images were topographically normalized using
the C-correction algorithm developed by Teillet et al. (1982) with
the help of the GDEM V2 and knowledge of the solar zenith and azi-
muth angle at the moment of image acquisition. Finally, the Landsat
TM images were converted to apparent surface reflectance. The orig-
inal digital numbers of reflective TM bands were scaled to radiance
values (L) using the procedure proposed by Chander and Markham
(2003). The radiance to surface reflectance (p) conversion was
performed by using the image-based cosine of the solar transmittance
(COST) method (Chavez, 1996). Path radiance (L,) values were com-
puted by using the formulae reported in Song et al. (2001), which

Table 2
Dataset characteristics.

assumes 1% surface reflectance for dark objects (Chavez, 1989,
1996). The optical thickness for Rayleigh scattering (p,) was estimat-
ed according to the equation given in Kaufman (1989).

Digitizing of surface mines at large scales is a very effective meth-
od for accurately documenting surface mining activity. Following
this idea, the perimeters of SCM affected areas were digitized using
high-resolution orthophotographs to act as ground reference data
to assess the accuracy of the different SCMAA estimates (Fig. 3).

Under the ‘unmixing’ caption of Fig. 2, we included three key
processes: spectral library creation; SMA and MESMA. Fig. 4 shows
a detailed flowchart of this stage of the methodology. Though from
a chronological point of view we built the spectral library before ap-
plying SMA/MESMA, we described the SMA/MESMA processes before
the creation of the spectral library for a better understanding.

2.4.2. SMA/MESMA algorithms

SMA is generally defined as the calculation of land cover fractions
within a pixel (Roberts et al., 1998). Unmixing considers that each
pixel can be represented as a weighted linear combination of the se-
lected endmembers, with the weight being the endmember frac-
tions, and a residual (Eq. 1).

Xx=Mf+e (1)

where x is the n-dimension reflectance vector; n, the number of
bands used; c, the number of endmembers used; M, nxc, the
endmember spectra matrix; f, c-dimensional fraction vector; and e,
n-dimensional error vector, representing the residual error.

The aim of spectral unmixing is to solve Eq. (1) for each pixel of the
image, obtaining f, with x and M knowns. In this way, a fraction image is
obtained for each endmember considered, which represents the per-
centage of that endmember in the original data. If the number of
endmembers defined together with their spectral signatures have
been correctly characterized, f will conform to the following conditions:
(1) all its elements are greater than or equal to zero and less than or
equal to one; (2) the sum of all of them is unity; and (3) the error
term, e, will be negligible (Quintano et al., 2006). There are different
methods for solving Eq. (1). Singular value decomposition is one of
them, and it is the methods used by the software package used in this
work, VIPER Tools (Roberts et al., 2007).

MESMA is an extension of SMA that addresses spectral and spatial
variability within material classes by allowing the number and type
of endmembers to vary on a per pixel basis (Roberts et al., 1998).
Rather than using waveband selection or spectral transformation tech-
niques to reduce endmember variability, MESMA enables the user to se-
lect multiple endmembers to represent each material class. By using
VIPER Tools open-software (Roberts et al., 2007), MESMA unmixing
can be accomplished with two, three or four endmembers, which is
comprised of one, two or three classes endmember coupled with a
shade endmember (Dennison et al., 2007; Roberts et al., 1998). The
chosen model for each pixel, i, is the one that minimizes the root

Study area Image Windowed image (analyzed area)
Sensor Source Path Row Date Projection/datum Area (km?) Lat-Lon (center of windowed image)
Spain Landsat-5 TM USGS 203 30 24 June 2011 UTM-30N 1788.31 —6.6462 E
/WGS-84 42.9907 N
USA Landsat-5 TM USGS 19 34 3 June 2006 UTM-17N 1464.63 —83.4090 E
/WGS-84 37.5358 N
Australia Landsat-5 TM USGS 90 82 20 October 2011 UTM-56S 1974.71 150.7248 E
/WGS-84 32.2070 S

Note: TM, Thematic Mapper; USGS, US Geological Survey; UTM, Universal Transverse Mercator; WGS, World Geodetic System.
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mean square error (RMSE) over the included number of bands, B,
used in unmixing (Eq. 2):

'/

RMISE, = [0 (ee) /] 2)

The VIPER Tools software used in our study allowed us to fix the
minimum and maximum allowable fraction values, the maximum al-
lowable shade fraction value, and the maximum allowable RMSE to
obtain the fraction images by applying MESMA to the original
Landsat-5 TM images. Specifically, the following values were em-
ployed in our study: minimum and maximum allowable fraction
values, —0.05 and 1.05, respectively; maximum allowable shade
fraction value, 0.8; and maximum allowable RMSE, 0.025.

2.4.3. Spectral library creation

Before applying SMA/MESMA we needed to define the end-
members to unmix the Landsat images. Endmember selection is the
most important step in SMA/MESMA. It determines how accurately
the mixture models can represent the spectra (Tompkins et al.,
1997). The endmember selection must accommodate the dimen-
sionality of the mixing space. It involves determination of the num-
ber of endmembers and the methods to select these endmembers.
The definition of appropriate spectral endmembers may be either
done using reference endmembers from spectral libraries or from
the image itself (image endmembers). We formed our spectral li-
brary from two sources: the Landsat images (image endmembers)
and an AVIRIS-based spectral library (reference endmembers). As
image endmembers we mainly included vegetation and mining sur-
faces, whereas reference endmembers were mostly impervious sur-
faces and soil spectra.

To select the image endmembers, we first applied a minimum
noise fraction (MNF) transformation and the pixel purity index
(PPI) algorithm (Boardman et al., 1995). MNF (essentially two cas-
caded principal components transformations) was used to deter-
mine the inherent dimensionality of image data, to segregate noise
in the data, and to reduce the computational requirements for subse-
quent processing (Boardman & Kruse, 1994). The data space could
then be divided into two parts: one part associated with large eigen-
values and coherent eigenimages, and a complementary part with
near-unity eigenvalues and noise dominated images. By using only
the coherent portions, the noise was separated from the data, thus
improving spectral processing results. The new MNF transformed
bands were then analyzed to find the most spectrally pure (extreme)
pixels in the image using PPI. The PPl image was the result of several
thousand iterations of the PPI algorithm. The higher values indicated
pixels that are relatively purer than pixels with lower values
(Environment for Visualizing Images, ENVI, 2009). Once the purest
pixels were located, we selected a subset identifying each end-
member type based on their spectra and local knowledge. From the
AVIRIS-based spectral library we selected reference endmembers
for surfaces that could not be readily identified in the Landsat-5 TM
images. Specifically, we used mainly endmembers that characterized
impervious surfaces as roads and roofs. Due to the limited spatial
resolution of Landsat-5 TM images, it was difficult to find pure pixels
that represented impervious surfaces. The endmembers of the
AVIRIS-based spectral library helped us to solve this limitation.

Once the spectral library with the candidate image and reference
endmembers was created three indices for identifying optimal end-
members were used: Endmember Average RMSE (EAR); Minimum
Average Spectral Angle (MASA); and Count-based Endmember Se-
lection Index (CoBI). All of them are included in the VIPER Tools
open-software package (Roberts et al., 2007) that was used to imple-
ment the MESMA algorithm. Endmember selection is an important
aspect that should take into consideration the spectral diversity of the
library and computational efficiency, since a spectral library can be
comprised of hundreds of spectra for each material class (Dennison
& Roberts, 2003a; Dennison et al., 2004). By using these indexes,
we selected the optimal endmembers and created the definitive
spectral library to unmix the Landsat-5 TM images.

EAR (Eq. (3)) selects the endmembers that produce the lowest root
mean squared error (RMSE) within a class (Dennison & Roberts,
2003b).

EAR; = >} |RMSE, ;/(n—1) 3)

whereiis an endmember, j is the modeled spectrum, N is the number
of endmembers, and n is the number of modeled spectra. The “—1”
corrects for the zero error resulting from an endmember modeling
itself.

MASA chooses the endmembers that produce the lowest average
spectral angle (Dennison et al., 2004). MASA is similar to EAR, but
uses a spectral angle (0) as the error metric. Spectral angle is calcu-
lated as shown in Eq. (4).

0= cos™! (Z)A\/Izlp)\p,A/Lpr') @

where pA is the reflectance of a endmember, p’A is the reflectance of
a modeled spectrum, Lp is the length of the endmember vector and
Lp’ is the length of the modeled spectrum vector calculated as
displayed in Eq. (5). MASA is then calculated as shown in Eq. (6):

Ly =T g
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MASA; = Y116,/ (n—1) (6)

Finally, CoBI selects endmembers that model the greatest number
of spectra within their class (Roberts et al., 2003). It can be used to
rank endmember selection based on maximizing the models select-
ed within the correct class, while minimizing confusion with other
classes. CoBI uses the MESMA concept to select endmembers based
on the number of library spectra each endmember models. CoBI de-
termines the number of spectra modeled by an endmember within
the endmember's class (InCoB) and outside of the endmember's
class (OutCoB). The optimum model would have the highest InCoB
and lowest OutCoB.

As shown in Fig. 4, our proposed methodology is iterative; we
unmixed the image varying the types of materials included in each
class (e.g., soil and NPV), the number of spectra within each class
and the complexity of the models (i.e., two, three or four endmember
models) until the fraction images obtained produced an accurate
SCMAA estimation. In some cases, when the percentage of classified
pixels was too low, the spectral library needed to be refined by intro-
ducing a new type of spectrum to model the unclassified areas.

The iterative procedure we used can be summarized as follows.
Starting with a two-endmember model (one class and shade), we
unmix the image by grouping in a class: 1) GV and coal mines;
2) GV, bare soil and coal mines; and 3) GV, bare soil, water and coal
mines. None of these two-endmember models allowed us to obtain
fraction images that produced an accurate SCMAA estimation. In
some cases, the percentage of classified pixels was too low; and in
others cases, the SCMAA estimate accuracy was unacceptable. Con-
sidering three-endmember models (two classes and shade), we
varied the type of material included in each class. After several trials,
we observed that using biotic class (GV-NPV) and abiotic class
(SCM-Soil) produced simultaneously an accurate SCMAA estimate
and a low number of unclassified pixels. Besides these facts, the hier-
archical scheme that we followed (see Table 3) could be used with small
variations (only at level 3) in the three study areas so we could propose
a general method that works in different world forest ecosystems. We
tried four-endmember models as well to check if the SCMAA estimate
accuracy could be increased. The increase in accuracy, however, was
too low compared to the increase in complexity to group the materials
into three classes; so we decided to follow the scheme of Table 3 in all
three study areas.

Table 3
Endmember signatures included in the definitive spectral library hierarchically grouped.

187

Specifically, endmembers were selected based on a hierarchical clas-
sification scheme with three levels, Impervious-pervious (Level 1),
endmember class (i.e., GV, NPV, etc.; Level 2) and endmember type
(i.e., forest, open forest, scrub, etc.; Level 3). A key goal then was to iden-
tify optimal endmember sets that captured the spectral diversity of the
biotic components (GV-NPV) and abiotic components (SCM-Soil) and
produced accurate, stable fractions of mine affected area.

2.4.4. Vegetation indices

For the three Landsat-5 TM images, we calculated Normalized
Difference Vegetation Index (NDVI) (Rouse et al., 1973) and Modi-
fied Soil-Adjusted Vegetation Index (MSAVI) images (Qi et al.,
1994a, 1994b), hypothesizing that these two indices would increase
the separability of mined and reclaimed areas from other cover
types. The NDVI has been frequently used in surface mining studies
and has proven useful to map the areas affected by this activity
(Erener, 2011; Prakash & Gupta, 1998). MSAVI, and its later revision
MSAVI2 (Eq. 11), are soil adjusted vegetation indices that seek to ad-
dress some of the limitation of NDVI when applied to areas with a
high degree of exposed soil surface. Qi et al. (1994a) developed the
MSAVI, and later the MSAVI2 (Qi et al., 1994b) to more reliably and
simply calculate a soil brightness correction factor. MSAVI2, though
often called MSAVI, has been used in a number of erosion studies,
where bare soil is one of the most important covers (Liu & Wang,
2005). As is true for most studies, we used the MSAVI2 version of
the index, though we refer it as MSAVI.

MSAVI2 = <2NlR +1—/(2NIR +1) — 8(NIR - RED)) /2 (7)

where RED and NIR are respectively the red and near-infrared
reflectance.

2.4.5. Classification

The ISODATA clustering algorithm was used to classify the SMA
and MESMA fraction images as well as NDVI and MSAVI images.
ISODATA is one of the most commonly used of the remote sensing
unsupervised classification algorithms (Jensen, 1996). We used 10
classes in all cases so the influence of the classifier in the final accura-
cy of SCMAA estimations was minimized. A 3 x 3 median filter was
applied as post-classification procedure.

Hierarchical levels Spectral library Origin Endmembers per study area
Level 1 Level 2 Level 3 Spain USA AU
Pervious GV Forest GV&NPV ™ 1 2 1
Open forest GV&NPV ™ 1 1 1
Scrub GV&NPV ™ 1 1
Grass GV&NPV ™ 2
irrigated crop GV&NPV ™ 1
Unirrigated crop GV&NPV ™ 1 1
NPV NPV GV&NPV AVIRIS 1
Bare soil Bare soil SCM&SOIL AVIRIS 1
Water Rivers SCM&SOIL ™ 1
Lakes/Basins SCM&SOIL ™ 1 1 1
Impervious Coal mines Wall SCM&SOIL ™ 1 1
Coal seam SCM&SOIL ™ 1 1 1
Mud basin SCM&SOIL ™ 1
Bare rock SCM&SOIL ™ 1 1 1
Road Asphalt SCM&SOIL AVIRIS 1 1 1
Urban Roof SCM&SOIL AVIRIS 1 1 1
Urban mixture SCM&SOIL ™ 1 1
# Endmembers in GV&NPV 4 7 4
# Endmembers in SCM&SOIL 6 10 6
# Models used in unmixing 24 70 24
Image classified (%) 923 99.26 98.6

Note: GV&NPV: green vegetation and non-photosynthetic vegetation; SCM&SOIL: surface coal mines and soil; AU: Australia.
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2.4.6. Accuracy assessment

We validated the SCMAA estimations using error matrices and the
K statistic (Congalton & Green, 2009). The resulting K statistic indi-
cates whether the confusion matrices are significantly different
from a random result. Other accuracy statistics were also considered:
overall accuracy (OA), producer's accuracy (PA) (omission error) and
user's accuracy (UA) (commission error). As ground reference we
used the SCMAA digitized from the fine resolution orthophotographs.
To check whether classification results were a significantly different
between a pair of SCMAA estimates, we used a Z-test based on the k
statistics of both estimations. Note that z.=1.96 at the 95% confi-
dence level, and that the null hypothesis HO: (k1 —k2) =0 is rejected
when Z>z. Previously to compute the error matrices, we applied a
random sampling over the ground truth image (20% of SCMAA and
10% of the unaffected area were considered).

3. Results

As presented in Methods, we used both reference and image
endmembers to construct our spectral library. As shown in Fig. 4,
the candidate image endmembers were selected visually among
the purest signatures, located after applying MNF transform and
PPI to Landsat images. The selection strategy was to try to catch the
variability of both classes of interest: SCM affected and unaffected
area. Therefore, we looked for spectral signatures inside and outside
the SCMAA perimeters with the intention of seeking the highest con-
trast and separability of both classes. Specifically, and as an example,
we found four different types of spectra that represented the variability
in the American SCMAA: wall, coal seam, mud basin, and bare rock. The
candidate reference endmembers from the AVIRIS-based spectral li-
brary were added to the candidate image endmembers. The refer-
ence endmembers provided mainly information on anthropogenic
areas, specifically in mixing surfaces (urban and degraded areas)
where it was difficult to find pure spectra in the Landsat images. Fi-
nally, multiple criteria were used to choose the definitive end-
members to be included in the spectral library using EAR, MASA
and CoB. We gave preference to endmembers whose EAR and
MASA were lower and CoB was higher.

Table 3 displays the hierarchical grouping of the endmember sig-
natures included in the definitive spectral library. We defined three
levels searching for equivalence among the types of endmembers of
the three study areas. The first level distinguished between pervious
and impervious surfaces; the second level grouped GV, NPV, bare soil
and water in to the pervious level, and coal mines, roads and urban
surfaces in to the impervious one; finally, the third level detailed
some classes of the level 2, allowing the variability among the differ-
ent study areas. In our final models 10, 17 and 10 different end-
members were used, respectively, in the modeling of the Spanish,
American and Australian study area. Due to greater complexity of
land use in USA study area, where large reclaimed areas, extensive
urban areas and a large road network were present, we needed a
higher number of endmembers in this area. These endmembers
were grouped in to two spectral libraries: green vegetation and
non-photosynthetic vegetation (GV&NPV), and surface coal mines
and soil (SCM&SOIL). Table 3 also shows the number of models
used to unmix the images in each study area (24, 70 and 24, respec-
tively). In all cases, three fraction images: SCM&SOIL, GV&NPV and
shade were obtained.

Fig. 5 shows the spectral signatures of four of the most represen-
tative endmembers of the study: forest, scrub, coal mines and urban.
It is remarkable that the fundamental pattern of these spectra was
the same over all the study areas with the only difference in value.
Despite the different types of coal mining surfaces that exist at global
scale, all of them are mainly characterized by: wide surfaces devoid of
vegetation, large road infrastructures, high walls, coal seams, large
holes (100 m depth), water surfaces and charcoal stores. These altered

surfaces contrast with the natural areas in which they are embedded.
As intermediate land use, especially in USA, there are large surfaces
where vegetation was restored. These reclaimed areas, especially in
their early stages, are an important cause of confusion in differencing
SCM affected and unaffected areas because the bare floor with an
herbaceous cover can be easily confused with SCMAA.

As shown in Table 3, the percentage of pixels classified was over
90% in all study areas, rising to 98% and 99% in two of them. These fig-
ures and the visual evaluation of the fraction images showed that the
modeling was generally good, accurately identifying many of the
SCMAA. As an example, Fig. 6 displays the fraction images obtained
in the Spanish study area. Both the SCM&SOIL and GV&NPV fraction
images show an important contrast between SCMAA and background.
It can be observed in the SCM&SOIL fraction image zoom that this
fraction detects with great precision the areas affected by surface
coal mining and that it would be even possible to identify the differ-
ent levels of impact on the vegetation inside the SCMAA, what could
serve to establish severity levels of surface mining in a future work.

UA, PA, OA and & statistic of the different SCMAA estimations in
each study area are provided in Table 4. The Z-test showed that all es-
timates were significantly different. The MESMA-based estimate was
the most accurate in all three study areas (k equaled 0.75, 0.85 and
0.89 respectively in Spain, USA and Australia). Moreover, this esti-
mate showed a greater balance between UA and PA. In contrast, the
NDVI-based estimate displayed an unequal performance in the differ-
ent study areas. In the Spanish study area, it had a low k statistic. Its
lower UA (high commission error) indicates that there was significant
confusion between SCMAA and areas with bare soil and rocks. The
main reason for this confusion is surface heterogeneity in the Spanish
area, including old burned scars, scrub, and eroded areas, in addition
to subsurface mines. On the other hand, the NDVI-based estimate in
the American study area had the second highest accuracy. Regarding
the SMA-based estimation, it displayed a high stability, showing a rel-
atively high accuracy in all of the study areas. Finally, the least accu-
rate estimates were based on MSAVI. This index did not perform as
well as expected.

To complement the accuracy analysis displayed in Table 4, Table 5
shows the SCMAA estimated by each method classified by the
unsupervised classifier as well as the SCMAA obtained from the
ground reference image. MESMA-based estimates achieved results
that were closest to the actual value. The imbalanced performance
of the NDVI-based estimate as well as the underestimate of SCMAA
using MSAVI can also be observed (Table 5). Finally, Fig. 7 shows the
map of SCMAA estimated by each input considered in the Australian
study area. The image shows graphically the results discussed in
Tables 4 and 5.

4. Discussion

Hierarchical grouping of the endmember signatures included in
the definitive spectral library allowed us to generate three fraction
images: GV&NPV (biotic), SCM&SOIL (abiotic), and shade in our
three study areas. Both the number and the type of fraction images
coincide well with the number and type found previously by other
authors. Fernandez-Manso et al. (2005) used these three same
types of fraction images (obtained by SMA) to map the forest surface
affected by mining activities. Specifically, the authors found that
mining affected areas (dark and light), vegetation (GV) and shade
fraction images led to the most accurate estimate of forest areas af-
fected by mining activities. Similarly, Adams and Gillespie (2006)
found that the ability to discriminate components depends on the
properties of each type of landscapes. In particular they stated that
three endmembers: GV (green leaves in canopy and in understory),
soil/rock, and shade, are the most adequate set to model landscapes
similar to ours. In particular, our results illustrate the importance of
building an abiotic spectral library, SCM&SOIL, which reflects the
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Fig. 5. Spectral signatures of some of the most representative endmembers.

land use impacts on the landscape as mining versus the green vege-
tation or forests. MESMA, by accounting for spectral heterogeneity, is
better able to model spectrally variable human modified landscapes.
We hypothesize that MESMA based SCMAA estimates had the
highest accuracy in all three study areas because MESMA better
accounted for this heterogeneity, especially in abiotic surfaces. Sim-
ilar results have been found in urban areas (i.e. Lu & Weng, 2004;
Rashed et al., 2003; Wu, 2004) where spectral heterogeneity is high.

Concerning the performance of MESMA versus SMA, we did not
find any study that compared these two techniques. There are some
studies, however, that used fraction images derived from SMA to
identify mine affected areas. Lévesque and Staenz (2008) monitored
mine tailings re-vegetation using multitemporal hyperspectral im-
ages. In their work, total vegetation fraction (high/low photosynthet-
ic), total tailings fraction (fresh/oxidized), and texture of the
vegetation fraction were used in a K-mean unsupervised classifica-
tion, producing an OA equal to 78.13% and a x statistic of 0.74. A sim-
ilar value of ~ statistic was obtained by Fernandez-Manso et al.
(2005), who developed a model involving segmentation of the
shade fraction image into objects and classification based in member-
ship functions to map mining affected areas in North Spain from
Landsat data. OA in this study was estimated to be 84.91% and k statistic
was 72.05%. Richter et al. (2008) quantified the rehabilitation process in
the Kam Kotia mine (Canada). Their study combined constrained SMA
and threshold-based classification. With this procedure they retrieved
fraction maps of major mine tailings-related surface materials and
hence generated a surface map separating green vegetation, transi-
tion zones, dead vegetation, and oxidized tailings, and calculated

the extent of each of the zones. The four zones were correlated
with the extent and degree of vegetation cover affected by tailings
material. Finally, Shang et al. (2009) characterized mine tailings in
Northern Canada from fraction images obtained by applying SMA
to hyperspectral remote sensing data. Unlikely, as many of other
studies (as Erener, 2011; Latifovic et al., 2005; Prakash & Gupta,
1998; Martha et al., 2010; Shank, 2008; Wen-bo et al., 2008), they
did not include a quantitative accuracy assessment.

Among the studies which evaluated accuracy, Townsend et al.
(2009) calculated the PA and UA of mined and reclaimed cover clas-
ses in the Central Appalachians during 1999 to 2006 from NDVI
Landsat images, specifically: PA varied from 66.7% to 77.8%, and UA,
from 76.9% to 82.4%. Their results show the unequal performance of
this vegetation index when the year of study varied. This conclusion
agrees with our results showing dissimilar performance of NDVI
over the different study areas. On the other hand, Schmidt and
Glaesser (1998) monitored the environmental impacts of open cast
lignite mining in Eastern Germany from Landsat images by using a
maximum likelihood classifier. They were not able to calculate the
classification accuracy for all the Landsat TM images because of the
lack of reference data for all dates. To provide some measure of accu-
racy, they defined the percentage accuracy as the ratio of the number
of hectares classified for a certain feature to the number of hectares
for the same feature measured from the reference data (field data
and aerial photographs). Using this metric, their average classification
accuracy over the period 1989-1994 was 82.7% for the surface mine
features and 86.1% for the reclaimed features. These figures, however,
are difficult to compare to our accuracy results.
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Fig. 6. MESMA-based fraction images in the Spanish study area. Upper left: SCM&SOIL fraction image; center left: GV&NPV fraction image; down left: shade fraction image, right:

zoom of the SCM&SOIL fraction image.

Table 4

User's Accuracy (UA), Producer's Accuracy (PA), Overall Accuracy (OA), k statistic and standard deviation of k statistic (0;) of the Surface Coal Mining Affected Area (SCMAA)

estimations.

Image classified Spain USA Australia

UA PA OA K O UA PA OA K [ UA PA OA K (o
NDVI 0.57 0.87 0.81 0.20 0.0023 0.82 0.93 0.94 0.73 0.0026 0.90 0.94 0.96 0.84 0.0015
MSAVI 0.62 0.93 0.91 0.36 0.0034 0.95 0.76 0.95 0.65 0.0034 0.95 0.70 0.91 0.52 0.0027
SMA 0.81 0.83 0.98 0.64 0.0049 0.79 0.92 0.93 0.67 0.0027 0.91 0.94 0.96 0.86 0.0015
MESMA 0.92 0.84 0.99 0.75 0.0045 0.93 0.91 0.97 0.85 0.0022 0.95 0.94 0.97 0.89 0.0013

Note 1: Bold values represent the most accurate estimation.
Note 2: All estimations are significantly different in the three study areas.
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Table 5

Surface coal mining affected area (SCMAA), expressed in absolute and relative values.
Image Spain USA Australia

km? % total  km? %total  km? % total

NDVI 360.28  20.15 150.73 10.28 205.82 1042
MSAVI 197.25 11.03 46.06 3.14 63.51 3.22
SMA 43.63 244 173.47 11.83 198.97 10.08
MESMA 27.38 153 83.91 5.72 163.90 8.30
Ground Reference 29.36 1.64 78.68 5.36 158.59 8.03

Note: Bold values represent the most accurate estimation.

A relevant aspect of our study is the comparison of different
methods to map SCMAA on three different forest ecosystems. The im-
portance of our work is higher when considering the low number of
studies relating remote sensing and mining activities compared to

the high importance of coal mining in the world. Previously, most,
studies have focused on a single region (Bernhardt & Palmer, 2011;
Connor et al., 2004; Pond et al., 2008). We are unaware of any study
that evaluates the effects of surface coal mining in Africa, where
such economic activity has an important economic and spatial rele-
vance. Our comparison among the results obtained in three conti-
nents (America, Europe, and Australia) determined that although
local conditions can have an influence on the results (we observed
small differences among the three study areas), it is possible to devel-
op a globally applicable model using the proposed MESMA-based
method.

5. Conclusions

SCM has an important economic, social and environmental impact
at the global scale. SCM, particularly mountain top removal, causes
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Fig. 7. Surface coal mining affected area (SCMAA) estimated in the Australian study area. Upper left: MESMA-based SCMAA estimation; upper right: SMA-based SCMAA estimation;

down left: NDVI-based SCMAA estimation; down right: MSAVI-based SCMAA estimation.
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disruption and degradation over wide regions of the world. The de-
velopment of energy policies, environmental and social issues associ-
ated with the coal resources needs a reliable source of information to
be contrasted. The study, for the first time evaluates the potential of
remote sensing to accurately map SCMAA at a global scale.

We analyzed the potential of MESMA to accurately map SCMAA
from Landsat data and to increase the accuracy obtained by conven-
tional methods such as the classifying NDVI image. We have shown
that MESMA can be successfully applied to Landsat data to accurately
locate and quantify SCMAA. The building of a spectral library compris-
ing both image endmembers and reference endmembers from AVIRIS
image helped in the characterization of SCMAA. EAR, MASA and CoB
lead to an optimal selection of endmembers finally used. We demon-
strated that MESMA using these three endmembers: GV&NPV (biot-
ic), SCM&SOIL (abiotic), and shade, out-performed simple SMA and
spectral indices when SCMAA modeling is considered. In the three
study areas, results showed a significant improvement in the accura-
cy of the SCMAA estimates when MESMA was used. We conclude that
the presented MESMA-based approach has a high potential to map
accurately SCMAA in different world forest ecosystems.

We showed that the remote sensing techniques used in this study
are useful tools, capable of aiding in the process of monitoring forest
cover changes caused by mining activities. As remote sensing tech-
nology advances, its potential role in monitoring surface mining and
reclamation will be enhanced. This study provides a basis upon
which future research can build and it is an open research line with
a great potential for extracting information from multispectral satel-
lite imagery.
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