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ABSTRACT: Decision makers in the Columbia River Basin (CRB) are currently
challenged with identifying and characterizing the extent of per- and
polyfluoroalkyl substances (PFAS) contamination and human exposure to
PFAS. This work aims to develop and pilot a methodology to help decision
makers target and prioritize sampling investigations and identify contaminated
natural resources. Here we use random forest models to predict ∑PFAS in fish
tissue; understanding PFAS levels in fish is particularly important in the CRB
because fish can be a major component of tribal and indigenous people diet.
Geospatial data, including land cover and distances to known or potential PFAS
sources and industries, were leveraged as predictors for modeling. Models were
developed and evaluated for Washington state and Oregon using limited available
empirical data. Mapped predictions show several areas where detectable
concentrations of PFAS in fish tissue are predicted to occur, but prior sampling
has not yet confirmed. Variable importance is analyzed to identify potentially
important sources of PFAS in fish in this region. The cost-effective methodologies demonstrated here can help address sparsity of
existing PFAS occurrence data in environmental media in this and other regions while also giving insights into potentially important
drivers and sources of PFAS in fish.
KEYWORDS: variable importance, industry, land cover, sources, Washington, Oregon, tribes

1. INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are man-made,
pervasive compounds that are widely used in a range of
industrial processes and consumer products.1 Currently in the
United States, it is estimated that millions of homes receive
PFAS-contaminated drinking water, and local testing indicates
widespread contamination of environmental media.2,3 Human
exposure to PFAS is thought to mainly occur through dietary
and drinking water intake.4 With PFAS exposure being a
growing concern for governments, communities impacted by
contamination, as well as the general public, models and tools
that use available spatial data to identify hotspots and
important predictors of PFAS contamination in environmental
media are actively being developed.5−9 Previous studies have
developed predictive models to identify PFAS contamination
in groundwater and drinking water, often in smaller regions
that are relatively rich with PFAS occurrence data. These
groundwater and drinking water models generally include
expected sources of high levels of PFAS contamination from
aqueous film-forming form (AFFF) use such as that at airports,
fire training facilities, and military installations.6−9 However,
few studies evaluate the potential impact of other types of
PFAS-related sources and industries or account for potential
contamination from PFAS other than perfluorooctanesulfonate

(PFOS) and perfluorooctanoate (PFOA).6,8 Additionally, few
if any studies have developed these predictive models for other
environmental media such as fish tissue.
The Columbia River Basin (CRB) is home to high fish-

consuming populations, such as tribal fish consumers and
subsistence fishers.10 Tribal people in the CRB have relied on
native fish species for physical, cultural, and spiritual
sustenance for thousands of years.11 However, increasing
population and human activity in this region over the past few
decades poses a growing risk of impaired water quality and
chemical contaminants in locally caught fish.10,12 A survey
conducted by USEPA from 1989 to 1994 found that members
of tribal nations in the CRB ate up to 11 times more fish than
the general U.S. population, indicating that they could be a
particularly vulnerable population to chemical exposures
through their diet.13 Several years after this survey, USEPA
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collected samples of fish frequently eaten by tribal nations in
the CRB and found metals, pesticides, and/or organic chemical
pollutants in all species.14 Other studies have found significant
levels of toxic chemical pollutants in fish and surface waters in
the CRB, prompting fish consumption advisories to warn the
public about potential health risks of eating certain fish in
particular locations.10,15−18 USEPA, in conjunction with tribal
governments, states, and localities, formed the Columbia River
Toxics Reduction Working Group (now called the Columbia
River Basin Restoration Program Working Group) in 2005 to
understand and reduce toxic chemicals in the basin.10,11

However, the amount and frequency of sampling in the CRB
has decreased since the 1990s and increased monitoring,
coordination, and exchange of information across the basin has
been recommended.13,19

While PFAS contamination can be presumed near well-
studied sources,5 the sheer number of those and additional
potential PFAS sources throughout a larger region of interest,
as well as unknowns regarding specific facilities’ PFAS use, lack
of ground truthing data, and uncertain fate and transport
properties of PFAS in various environment media, can make
sampling prioritization for resource-limited entities over-
whelming and complex (Figure 1). To address the sparsity
of existing PFAS occurrence data in this region, an efficient
methodology is needed to design cost-effective sampling
campaigns. This study leverages existing PFAS occurrence
data in fish tissue, publicly available geospatial data, and

random forest modeling to identify locations with potential
PFAS contamination in fish and important sources in the
Columbia River Basin. We pilot a broadly applicable modeling
workflow that can help decision-makers in the region target
and prioritize their sampling investigations and efficiently
identify contaminated natural resources.

2. MATERIALS AND METHODS
2.1. Study Area. The Columbia River Basin is a large

watershed located in the northwestern United States and
southwestern Canada that drains an area of about 666,700
square kilometers.20 The basin spans across 7 U.S. states
(Washington, Oregon, Idaho, Montana, Wyoming, Nevada,
and Utah), 16 federally recognized tribal reservations, and
extends northward into British Columbia, Canada (Figure 1).
The Columbia River is the fourth largest river in North
America, beginning in the Canadian Rocky Mountains and
emptying into the Pacific Ocean in Washington and Oregon.21

Major tributaries in the basin that feed into the Columbia
River include the Snake River, Kootenai River, Clark Fork-
Pend Oreille River, Willamette River, and Yakima River.20

Geography and land cover varies vastly throughout the Basin
including areas dominated by rainforests, mountains, deserts,
and dry plateaus.22 This study focuses on the states of
Washington (WA) and Oregon (OR), where the most
abundant fish tissue occurrence data in the CRB were
identified. The study aims to develop and pilot a workflow

Figure 1. Map of the contiguous United States and southern Canada showing the extent of the Columbia River Basin (shaded in beige) and its
incorporated states (text). Bureau of Indian Affairs (BIA) recognized tribes are shaded in blue. Inset map shows the Basin and potential PFAS
sources including national defense sites (red triangle), fire training facilities (orange square), airports (airplane symbol), and PFAS-related industry
facilities from USEPA’s ECHO database (purple circles).
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from these two states that can later be applied to the rest of the
CRB and beyond.
2.2. Fish Tissue Occurrence Data. In Washington and

Oregon, measurements of PFAS in fish tissue were down-
loaded from USEPA’s PFAS Analytic Tools (PAT), a data
analytic hub for PFAS data measured in various environmental
media.23 The fish tissue measurement data acquired from the
PAT hub was pulled from USEPA’s Water Quality Portal,24

where states, tribes, and other organizations can upload their
water quality data directly into a central database, and from
USEPA’s National Rivers and Streams Assessment.25 In
addition to the data collected from PAT, other fish tissue
measurement data were acquired from by Washington
Department of Ecology’s Environmental Information Manage-
ment (EIM) System.26

The fish tissue samples in the dataset obtained from the
above sources were collected over years 2008 through 2019.
Data from any fish species were included in this study due to
the limited availability of data in this region. The recorded fish
species included brook trout/sea trout, brown bullhead,
channel catfish, common carp, cutthroat trout, largemouth
bass, largescale sucker, mountain whitefish, northern pike-
minnow, peamouth, pumpkinseed, rainbow trout, redband
trout, steelhead trout, smallmouth bass, tench, tyee sucker,
walleye, and yellow perch. While many of these fish species are
nonmigratory or locally migratory, others such as trout,
channel catfish, and walleye have been observed migrating
expansive distances for spawning.27 The lifespans of these fish
are typically around 10 years or less on average except for
common carp, bass, tench, and walleye which can live for
longer periods of time.27 Most of these fish species are lower
trophic levels being herbivores, invertivores, and/or piscivores;
however, bass can also be higher trophic levels and have
partially carnivorous diets.27

The data were filtered to only include fillets with skin on in
order to obtain better correspondence between the different
datasets for the analyses, which produced PFAS measurement
data for 45 samples. Several of these fish samples were
collected in similar locations or water bodies, but during
different years and sampling campaigns. Measurements from
different fish specimens, including those of varying species, that
were sampled at the same location on the same day were
averaged to a single fish sample, given the limited availability
and spatial resolution of this data.
2.3. Geospatial Data. Locational data have previously

been suggested as a starting point for identifying potential
PFAS exposure hotspots.5 Geospatial data used in this study
was acquired from USEPA’s PAT data hub,23 which provides
downloadable location data about industries, military, and
aviation facilities that have been registered through USEPA’s
Enforcement and Compliance History Online (ECHO)
database and have some relevance to PFAS use or potential
discharge.28 ECHO industries include sites used for fire
training, aviation, national defense, mining and refining,
landfills, metal coating, metal machinery manufacturing,
industrial gas, glass products, furniture and carpeting,
electronics, consumer products, cleaning product manufactur-
ing, chemical manufacturing, cement manufacturing, petro-
leum, industrial gas, paints and coatings, oil and gas, plastics
and resins, printing, paper mills, and textiles. Other than for
most military installations, this dataset does not include any
actual emissions data or confirmation about each facility’s
PFAS use or discharge, but these industry points are treated as

potential sources in this study. Wastewater treatment plant
locations were downloaded from USEPA’s Integrated Com-
pliance Information System National Pollutant Discharge
Elimination System (ICIS-NPDES).29 Land cover data were
downloaded from the U.S. Geological Survey’s National Land
Cover Database.30

In order to create spatial units relevant to fish populations
where predictions would be made, major rivers, streams, and
lakes where fishing was likely to occur were identified using
past or current fish consumption advisory lists and locational
information from previous sampling in the existing fish tissue
PFAS dataset.31−33 In ArcMap, points were added along all of
these identified waterbodies at 15 km distance apart from each
other. Where two or more waterbodies intersect or are near
each other, points along one waterbody may be closer than 15
km to points along other waterbodies. PFAS-related industry
location data were quantified by calculating the geodesic
distance from each waterbody point to the nearest facility for
each industry type.6 Existing fish tissue PFAS occurrence data
were also matched to the nearest waterbody point. A 5 km
buffer was drawn around each waterbody point within which
the percent of land cover classified as natural land (e.g.,
forests), agricultural land (e.g., crop fields), or developed land
(e.g., urban impervious surfaces) was calculated in order to
represent a snapshot of each point’s local environment type. All
geospatial calculations were done in ArcMap Desktop version
10.8.1.34 Correlations between the quantified spatial data
variables were calculated using the Pearson method.35

2.4. Statistical Methodology. The PFAS reported in the
collated fish tissue occurrence dataset varied by sampling
campaign; therefore, only common chemicals between all
samples were used for analysis. These included perfluorobu-
tane sulfonate (PFBS), perfluorodecanoic acid (PFDA),
perfluorododecanoic acid (PFDoA), perfluoroheptanoic acid
(PFHpA), perfluorohexane sulfonate (PFHxS), perfluorohex-
anoic acid (PFHxA), perfluorononanoic acid (PFNA),
perfluoroundecanoic acid (PFUnA), PFOS, and PFOA. A
∑PFAS (ng/g) concentration was calculated by summing all
detected PFAS concentrations for each fish tissue sample to
represent any PFAS exposure that may have been acquired
through consumption of the fish. Because the limits of
detection were not reported for all sampling campaigns or
for all chemicals measured and because the combined dataset
was not strongly zero-inflated, nondetects within the dataset
were treated as zeros. Summary statistics were calculated for
each PFAS concordant between datasets and for the ∑PFAS
metric. Modeling to predict ∑PFAS in fish tissue at each
waterbody point including unmonitored locations was
performed using a random forest model, which has been
used in prior PFAS modeling applications.8 Random forest
models consist of an ensemble of decision trees run in parallel
on random subsets of the data and can predict either
continuous (regression) or categorical (classification) out-
puts.36,37 The number of trees and number of variables used at
each node in the trees (mtry) can be specified by the user.
Predictions from the ensemble of decision trees are determined
by calculating the average value for regression models or the
majority vote for classification models.
Quantified spatial variables at waterbody points that were

matched to fish tissue occurrence data were used to develop
and then evaluate random forest regression models (n = 45).
The calculated ∑PFAS metric was used as a continuous
response variable in the models. Using a 100-iteration Monte
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Carlo holdout scheme to evaluate the models, the matched
waterbody and fish tissue occurrence dataset was randomly
split 100 times into 80% of the data used to train the models
and 20% of the data used for holdout cross-validation.
Reported model evaluation metrics�mean absolute error
(MAE), root mean square error (RMSE), and bias/mean error
(ME)�are the mean value of that metric over the 100
iterations of holdout validation. Variable importance, calcu-
lated as the percent increase in mean squared error if each
variable in the model were randomized one at a time was also
averaged over the 100 iterations. Because several predictor
variables were highly correlated (r > 0.8) (Figure S1), the

robustness of the variable importance results was evaluated by
pruning 7 correlated predictor variables from the models in an
additional 100-iteration Monte Carlo random forest regression
analysis. Sensitivity in variable importance was also evaluated
in a Monte Carlo 100-iteration random forest regression
analysis using only PFOS concentration data in the fish tissue
samples (PFOS detections in 31 samples) in order to evaluate
the influence of the high range of PFOS concentrations in the
∑PFAS model results. The small number of fish tissue samples
with PFAS measurements other than PFOS (n = 17, 38%) did
not allow for a meaningful analysis of results for models using
the other chemicals alone due to the heavy zero-inflation.

Table 1. Summary Statistics for PFAS Measurements in Fish Tissue (Fillet, Skin On) Samples from Washington and Oregona

N N > LODb max AM SD 50th percentile 75th percentile 95th percentile

PFOS 45 31 74.20 5.85 12.72 0.89 6.40 28.18
PFUnA 45 15 5.31 0.33 0.87 0.00 0.33 0.91
PFDA 45 9 4.31 0.34 0.93 0.00 0.00 2.74
PFDoA 45 8 3.47 0.21 0.65 0.00 0.00 1.10
PFNA 45 7 0.87 0.10 0.25 0.00 0.00 0.74
PFHxS 44 1 0.73
∑PFAS 45 33c 87.29 6.83 14.83 1.60 6.56 33.96

aMeasurements below the limit of detection (LOD) were substituted with zero. bNumber of samples for which measurements were above the limit
of detection. cNumber of samples for which at least one PFAS was measured above the limit of detection.

Figure 2. Map of Washington and Oregon showing predicted ∑PFAS concentrations (shaded circles) in fish tissue (fillet, skin on) from a random
forest regression model in rivers and lakes selected based on previous fish tissue sampling data locations and the likelihood of fishing activities.
Existing ∑PFAS measurement data in fish tissue (fillet, skin on) are shown as shaded triangles.
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Partial dependence plots were developed from a random forest
regression model using the complete matched fish tissue
dataset (n = 45). For ∑PFAS predictions at all of the
waterbody points (n = 1039) in Washington and Oregon, the
model was trained using all matched fish tissue occurrence data
(n = 45) and then predicted onto all points. All random forest
models were constructed using 1000 trees with an mtry
(number of predictors considered at each decision tree split) of
10, which maximized the percent of variance explained by the
model.
Random forest classification models were also developed

and evaluated with the same Monte Carlo holdout validation
scheme as the regression models described above. However,
instead of a continuous response variable, the fish tissue
∑PFAS concentrations in the classification model were
recoded into two groups for concentrations above and below
selected ∑PFAS concentration threshold values. A sensitivity
analysis was conducted using these random forest classification
models for three different ∑PFAS threshold concentrations�
1.5, 3, and 5 ng/g. The threshold concentrations were
arbitrarily chosen due to there not being a currently established
federal standard or statewide standard in Washington or
Oregon for PFAS concentrations in fish tissue and due to the
limited range of concentrations in the compiled occurrence
dataset. Evaluation metrics for each of the three threshold
value models were averaged over the 100 iterations and
included area under the curve (AUC), accuracy, sensitivity,
and specificity. Variable importance, calculated as the average
of each predictor variable’s mean decrease in accuracy over the
100 iterations, is also presented for each cutoff ∑PFAS
concentration in the sensitivity analysis. The random forest
classification models were constructed using 1000 trees with an
mtry of 10. All statistics and modeling in this study were
conducted using R version 4.2.1.38

3. RESULTS AND DISCUSSION
3.1. Data Summary. The number of fish tissue samples

from Washington in the final dataset for this study was 23,
while the number of fish tissue samples from Oregon was 22,
for a total of 45 samples. These samples were collected in 23
unique locations in Washington with data from 14 species of
fish and in 18 unique locations in Oregon with data from 10
species of fish. Locations in Oregon sampled at the same
location but during different years were in the Willamette
River, Tualatin River, Sandy River, and Rogue River. In
comparison to the eastern U.S., the Columbia River Basin has
relatively little fish tissue PFAS data that are publicly
available.23

Of the 10 measured PFAS that were common between the
fish tissue datasets, only 6 chemicals were detected in at least 1
sample�PFDA, PFDoA, PFHxS, PFNA, PFOS, and PFUnA.
Summary statistics for all PFAS detected in this study’s fish
tissue dataset are shown in Table 1. The most frequently
detected (69%) PFAS in the fish tissue samples was PFOS, and
the chemical with the highest mean (5.85 ng/g) and maximum
(74.20 ng/g) concentrations was also PFOS. This dominance
of PFOS in fish tissue has been observed in several other
studies of PFAS in fish tissue throughout the U.S.39−42 PFUnA
was detected next most frequently in 33% of the samples with a
mean concentration of 0.33 ng/g and maximum concentration
of 5.31 ng/g. Detection frequencies for PFDA, PFDoA, and
PFNA were 20, 18, and 16%, respectively. Mean concen-
trations for PFDA, PFDoA, and PFNA were 0.34, 0.21, and

0.10 ng/g, respectively. PFHxS was only detected in one
sample at 0.73 ng/g. When PFAS concentrations for all
chemicals measured in each sample were summed, 73% of the
fish tissue samples had a detection of ∑PFAS above zero (n =
33). The mean ∑PFAS concentration was 6.83 ng/g and
maximum ∑PFAS concentration was 87.29 ng/g. Much of the
existing fish tissue occurrence data used in this study comes
from sampling conducted near larger cities in Washington and
Oregon such as Seattle, Spokane, and Portland (Figure 2).
At the time of publishing this article, fish consumption

advisories and recommendations in the U.S. are issued at the
state or local levels, which has only been done for PFAS in fish
in 14 states.40 Fish consumption advisories for PFAS have been
issued primarily for PFOS, including an updated meal
allowance recommendation for the Columbia Slough water-
shed in Oregon and three lakes in Washington state in
2022.43,44 The fish tissue dataset used in this study suggests
that PFOS was the main potential contributor to consumer
PFAS exposure from fish in the Columbia River Basin region.
Nationally, the highest total PFAS concentrations were
generally found outside of the Columbia River Basin.40 The
median concentration for PFOS in fish tissue in Washington
and Oregon in this study (0.89 ng/g) was less than the median
found in nationwide fish tissue samples (6.6 ng/g).40 Median
total PFAS concentration in the national study (9.51 ng/g) was
higher than the median ∑PFAS concentration observed in this
study (1.60 ng/g).40

3.2. PFAS Predictions for Fish Tissue from Random
Forest Regression. A map showing ∑PFAS predictions in
fish tissue throughout the selected waterbodies in Washington
and Oregon from the random forest regression model is shown
in Figure 2. Prediction concentrations ranged from 0.68 to
58.10 ng/g with a right skewed distribution similar to that seen
in the existing fish tissue occurrence dataset. Predicted ∑PFAS
concentrations in fish tissue that were less than 2 ng/g
accounted for 31% of the waterbody points, while predicted
∑PFAS concentrations in fish tissue greater than 5 ng/g
accounted for 18% of the waterbody points. The highest
predicted concentrations, where ∑PFAS was greater than 10
ng/g, accounted for 8% of the waterbody points. Areas with
∑PFAS predictions greater than 5 ng/g are thought to be
mainly driven by PFOS contamination, while some areas with
lower ∑PFAS concentrations might be driven by other PFAS.
The highest ∑PFAS concentrations in fish tissue were

generally predicted to occur near cities with larger populations
such as Seattle, WA, Tacoma, WA, Spokane, WA, Portland,
OR and Eugene, OR. These more populated areas with higher
densities of potential PFAS sources tend to also be areas
targeted for PFAS sampling in various media, which was
evident in the fish tissue occurrence dataset. However, the
predictions in this study also suggest potential for higher
∑PFAS concentrations (>10 ng/g) in fish tissue in previously
unsampled areas such as those near Clarkston, WA, Pasco,
WA, Pullman, WA, Metaline Falls, WA, Bellingham, WA, Bend,
OR, Hereford, OR, and Ontario, OR (Figure 2). The authors
are not aware of any publicly available environmental media
measurements of PFAS to provide evidence for potentially
high concentrations in these areas, highlighting the need for
future investigations and sampling in this region.23 Other
unsampled areas with the potential for intermediate levels (2−
10 n/g) of PFAS contamination in fish tissue include those
along the Columbia River and its tributaries in northeast
Washington, the Yakima and Naches Rivers in southcentral
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Washington, the Palouse River in southeastern Washington,
the Snake and Powder Rivers in northeast Oregon, and the
Rogue River in southwest Oregon (Figure 2). Areas in which
lower ∑PFAS concentrations are predicted to occur in fish
tissue include the Tucannon River in southeast Washington,
Crab Creek in east central Washington, Satus Creek in south
central Washington, the Deschutes and John Day Rivers and
Willow Creek in north central Oregon, and the Nehalem and
Umpqua Rivers in western Oregon.
The random forest regression model was evaluated using a

100-iteration Monte Carlo scheme where the data were
randomly split into training data and holdout data 100 times
over which the error metrics were averaged. The mean MAE
was 7.26 ng/g, which is 8.32% of the range of measured
∑PFAS occurrence in the fish tissue samples, while the mean
RMSE was 164.65 ng/g. Additional training data in the higher
ranges of ∑PFAS concentrations, as well as lower
instrumentation limits of detection to lessen the number of
samples with nondetects, could improve future model
performance. The mean ME, or bias, over the 100 iterations
was 1.14 ng/g, indicating that there is a small bias toward
overpredicting ∑PFAS concentrations in the samples. Out-of-
bag model predictions are plotted against measured values
from a single random forest model to visualize model
performance over the entire range of measured ∑PFAS
concentrations in the dataset (Figure 3). The model generally

performed poorly for samples with nondetect (zero) or low
∑PFAS concentrations, which were overpredicted by the
model. Mid and high ranges of ∑PFAS concentrations were
both over- and underpredicted similarly.
Over the 100 iterations, the variables in the random forest

regression models with the highest mean percent increase in
MSE, thereby implying that those variables were important
drivers of ∑PFAS predictions, were the distance from the
nearest cement manufacturing facility followed by the distance
from the nearest glass product facilities (Figure 4). However,
cement manufacturing and glass product facilities are some of
the least represented industries in these states (9 and 15
facilities, respectively) (Figure S3).23 Other variables that were
important predictors in the regression model were the percent
of developed land, distance from the nearest fire training

facility, distance from the nearest metal coating facility,
distance from the nearest paints and coatings facility, and
distance from the nearest airport. Variables that were not
important in driving ∑PFAS predictions, where the model
performed better without their inclusion, were the distance
from the nearest electronics facility, percent of agricultural
land, distance from the nearest oil and gas facility, distance
from the nearest paper mill facility, and distance from the
nearest plastics and resins facility. These industries represent
some of the more well-represented industries (n > 65) in the
region except for oil and gas, for which there is only one facility
in central Washington. Boxplots showing the variability in the
percent increase in MSE for each variable over the 100
iterations is shown in Figure S2.
In order to assess the potential influence on the variable

importance results from highly correlated predictor variables (r
> 0.8, Figure S1), 7 predictors (textiles, printing, metal
machinery manufacturing, metal coating, electronics, national
defense, and percent agricultural land) were removed for a
pruned 100-iteration Monte Carlo random forest regression
analysis. When these highly correlated variables were removed,
the top 3 variables of importance in the models (cement
manufacturing, glass products, and percent developed land)
remained unchanged, and similar variables are shown as
important and unimportant between the pruned and unpruned
analyses (Figure 4). This indicates that the variable importance
results were robust even with highly correlated predictors
included in the model. To assess the influence on variable
importance results from possible PFAS species-specific sources,
another Monte Carlo 100-iteration random forest regression
analysis using only PFOS concentration data was performed.
The PFOS-only models showed similar variables of high and
low importance to that of the ∑PFAS models, indicating that
the large range of concentrations of PFOS in the fish tissue is
likely the main driver of variable importance results for the
∑PFAS models (Figure 4). With additional data collection
and increased detections of other PFAS chemicals in fish
tissue, a similar model could be developed in the future to
investigate drivers and sources of non-PFOS PFAS in fish.
The distance to expected sources of PFAS contamination

like airports and fire training facilities, often associated with
elevated levels of PFOS from suspected or known AFFF use,
were important predictors of PFAS contamination in environ-
mental media in both this study and previous studies.6,9,41,45

Urban land use has also been shown to be an important
predictor of PFAS contamination in this and a groundwater
study.6 However the distance to cement manufacturing and
glass product facilities were not expected to be important
predictors of PFAS contamination. A previous study predicting
PFAS in groundwater did not find either industry to be
important variables in their model.6 Uses of PFAS in cement
manufacturing include being added to reduce cement
shrinkage, maintain the cement’s flowing ability without
increasing water content, and protect the cement from natural
elements and pollutants.1,46 Cement has also been used for
PFAS remediation where contaminated soils and sediments are
incorporated into cements and concretes as fine particle
aggregates.47 Glass product industries also use PFAS to protect
the glass from weather and pollutants.46 In addition, PFAS are
used on glass as an anti-mist coating to prevent fogging on
mirrors, automobile windshields, eyeglasses, and green-
houses.46 Glass etching facilities also use PFAS as a wetting
agent.46

Figure 3. Out-of-bag modeled ∑PFAS predictions (log + 1) from a
random forest model plotted against measured ∑PFAS values (log +
1) in fish tissue (fillet, skin on). Dashed line shows 1 to 1 relationship.
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These differences in important model predictors between
environmental media types could suggest that some media are
contaminated by PFAS differently than other media, whether it
be due to PFAS structure and chemical properties, the distance
PFAS can travel from a source in various media types,
bioaccumulation in living media, or the influence of air

deposition in media near the surface versus groundwater.
Differences between the influence of certain industries and
PFAS contamination in environmental media in different
studies could also be due to regional differences in hydro-
geology, biota, and fauna, and the prevalence of different
industries. However, the inflated influence of PFOS in

Figure 4. Mean variable importance from 100-iteration Monte Carlo random forest regression models for (A) ∑PFAS, (B) ∑PFAS pruned by
removing highly correlated predictors, and (C) PFOS predictions in fish tissue (fillet, skin on). Metric used to determine variable importance is the
percent increase in mean square error (MSE).
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environmental media models could cause important drivers of
other PFAS chemicals from smaller sources to be overlooked,
which should be considered during future study design and
interpretation of results.
Partial dependence plots for the top industries in the variable

importance analysis show a relationship between the distance
from the nearest industry facility and ∑PFAS concentrations
in fish tissue, giving insights into how large of a radius from a
PFAS-related facility one might find contaminated fish. In this
study, ∑PFAS concentrations were elevated in fish tissue up to
about 35 km from cement manufacturing facilities, with smaller
elevations in ∑PFAS seen in fish up to about 60 km from
cement manufacturing facilities (Figure 5). Elevations in
∑PFAS were found in fish tissue located about 17 km from
glass product facilities, with smaller elevations observed up to
about 40 km from those sources. Elevations in ∑PFAS were
not observed past about 16 km from airports. Smaller
elevations in fish tissue ∑PFAS were observed up to about
35 km from fire training sites, 7 km from paints and coatings
facilities, 40 km from consumer products facilities, and 15 km
from metal coating facilities. The influence of land cover on
fish tissue ∑PFAS concentrations was also analyzed using
partial dependence plots (Figure 5). Elevations in ∑PFAS
were observed when the percentage of natural land
surrounding a location was below about 28% and the
percentage of developed land was above about 60%. While
there were comparatively few locations surrounded by
agricultural land in this study, a small increase in ∑PFAS in
fish tissue was observed when the percent of agricultural land
was above about 20%. While fate and transport models for
surface water flow or airflow could better estimate how far
PFAS contamination may travel from these industry facilities,
semi-quantitative tools like partial dependence plots can help
to estimate the fate and transport of PFAS in other complex
media such as fish in a data-driven approach.
3.3. PFAS Predictions for Fish Tissue from Random

Forest Classification. Maps showing ∑PFAS predictions in
fish tissue from random forest classification models throughout

selected waterbodies in Washington and Oregon are shown in
Figures S4−S6. Three cutoff concentrations were used to
classify ∑PFAS predictions as either detects or nondetects in
fish tissue�1.5, 3, and 5 ng/g. Due to their not being current
statewide (in Washington state or Oregon) or federal health
advisories for PFAS concentrations in fish, these cutoff
concentration values were chosen arbitrarily based on the
limited range and distribution of concentrations in this dataset
to illustrate the random forest classification method, show
sensitivity in results with varying thresholds, and compare
classification results to those from the regression model.
Regulators could find this classification methodology useful by
choosing a threshold concentration value meaningful to their
particular health advisory, chemical, or potentially exposed
populations that would allow them to identify hotspots of
PFAS in fish tissue in their regions of interest.
Concentrations in fish tissue above those thresholds (1.5, 3,

and 5 ng/g) were predicted in fish tissue at 32, 12, and 7% of
the waterbody points, respectively. Similar to the regression
model predictions, the classification models predicted
detections above the thresholds mainly near more populated
cities like Seattle, WA, Spokane, WA, Tacoma, WA, Eugene,
OR, and Portland, OR. For the 5 ng/g threshold model, only a
handful of waterbody points farther away from these larger
cities, primarily in northcentral Washington state, were
predicted to have fish tissue ∑PFAS concentrations above
the threshold. In contrast, fish tissue concentrations were more
likely to be predicted to be above the threshold in the 1.5 ng/g
classification model farther away from major cities along the
same waterbodies as well as along waterbodies that do not
intersect with these larger cities such as those in northeastern
Washington and southcentral Oregon. More populated areas
with higher densities of potential PFAS sources, particularly
those with known or suspected AFFF use, have historically
been areas that were targeted for PFAS sampling. Here, most
of the areas with predicted detections in the highest
concentration cutoff value model, 5 n/g, are those which
have already been sampled and are likely driven by the higher

Figure 5. Partial dependence plots from the random forest regression model showing marginal effects on ∑PFAS concentrations in fish tissue
(fillet, skin on) for (A) distance from the nearest industry facilities (for top 7 industries from variable importance plot) and (B) percent land cover.
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range of PFOS concentrations in fish tissue. However, lowering
the threshold concentration in the classification models could
help identify additional, previously unsampled areas or areas
driven by contamination other than AFFF use in which future
efforts could be focused.
The random forest classification models, using three cutoff

∑PFAS concentrations for detects or nondetects in the fish
tissue, were evaluated with a 100-iteration Monte Carlo
analysis. The best-performing classification model was the 5
ng/g threshold concentration, where the mean AUC, accuracy,
sensitivity, and specificity over the 100 Monte Carlo iterations
were 0.79, 81.78%, 80.63%, and 85.08%, respectively. The
worst-performing classification model was the 1.5 ng/g
threshold concentration, where the mean AUC, accuracy,
sensitivity, and specificity over the 100 Monte Carlo iterations
were 0.63, 71.00%, 65.12%, and 79.42%, respectively. For the 3
ng/g threshold model, the mean AUC, accuracy, sensitivity,
and specificity from the classification model over the 100
Monte Carlo iterations were 0.72, 80.22%, 74.62%, and
84.42%, respectively. This difference in performance between
the three thresholds indicates that the classification models
were able to better distinguish between higher concentrations
and nondetects than lower concentrations and nondetects in
the fish tissue. This may be due to indirect sources driving
lower PFAS concentrations in fish tissue, while higher PFAS
concentrations are more likely driven by sources with direct
PFOS contamination. In all three models, the specificity was
higher than the sensitivity, meaning that the models were able
to correctly identify nondetects better than they were able to
correctly identify detections above the thresholds.
For the better performing classification models (mean AUC

> 0.7) with cutoff ∑PFAS concentrations at 3 and 5 ng/g, the
variable with the highest mean decrease in accuracy, therefore
implying that it was an important driver of ∑PFAS detects or
nondetects at those thresholds, over the 100 iterations was
distance from the nearest paints and coatings facility (Figure
S7). For the 3 ng/g threshold model, other important variables
in the models were distance from the nearest metal machinery
manufacturing, distance from the nearest landfill, distance from
the nearest metal coating facility, distance from the nearest
mining and refining site, distance from nearest fire training site,
and percent developed land. For the 5 ng/g threshold model,
other important variables in the models were the nearest metal
coating facility, distance from the nearest metal machinery
manufacturing, distance from the nearest industrial gas facility,
percent developed land, distance from the nearest glass
products facility, and distance from nearest wastewater
treatment plant. While the 1.5 ng/g classification model did
not perform as well as the previous models (mean AUC =
0.63), its top variables of importance were the distance from
the nearest fire training site, percent developed land, percent
natural land, distance from the nearest mining and refining site,
distance from the nearest landfill, and distance from the nearest
airport (Figure S7).
The distance from the nearest paints and coatings facility

was the highest variable of importance in the 3 and 5 ng/g
threshold classification models and was also a higher variable of
importance in the regression models (Figures 4 and S7). A
previous study did not find the distance from paints and
coating facilities to be an important variable for predicting
PFAS in groundwater.6 There are 65 paints and coatings
facilities listed in Washington and Oregon, but most are
located in developed areas and near larger cities (Figure S3).23

Household paints have used PFAS as fluorosurfactants for
leveling, surface wetting, gloss, oil and water repellants, and as
anti-blocking agents on interior doors and walls.1,48 PFAS are
also used in paints for chemical reaction vessel linings,
increasing weatherability and durability of bridges, and aerosol
spray paints used on cars.48 Coatings containing PFAS have
been used for high performance wiring and cables, exterior
surfaces of buildings and bridges, electronics screens, and semi-
conductors.48 PFAS are used in coatings for anti-stick, anti-
corrosive, anti-reflective, and fire-resistant properties.1,48 One
study found that PFOS was the main PFAS detected in wet
room sealing paint,49 which could help explain the high
variable importance of distance to the nearest paints and
coatings facility for the higher threshold concentration
classification models (3 and 5 ng/g) and the regression
models due to the larger range of PFOS concentrations in the
dataset compared to the other chemicals. Other similar
variables of higher importance between the classification and
regression models were the distance from the nearest metal
coating facility and percent developed land (Figure 4). The
metal coating industry has many facilities in Washington and
Oregon (n = 290), but similar to the paints and coatings
industry, there are few metal coating facilities located outside
of developed areas and larger cities (Figure S3).23

Notably, the top variable of importance in the regression
models, the distance from the nearest cement manufacturing
facility, was not found to be a top variable of importance for
the classification models. While it was near last of importance
in the 1.5 ng/g classification model, it moved up in importance
in the 3 and 5 ng/g classification model, with it being the
highest in the list of important variables in the 5 ng/g model.
The effects of this disagreement between models can be noted
in northeastern Washington state, where a cement manufactur-
ing facility (Figure S3) appears to drive higher ∑PFAS
predictions in the regression model (Figure 2) that are not as
apparent in the classification model predictions (Figures S4−
S6). While glass products were important in both the
regression models and the highest threshold concentration
classification model (5 ng/g), it was not an important predictor
in the lower threshold concentration classification models. This
may suggest that the distance from the nearest cement
manufacturing facility and the distance from the nearest glass
products facility is important in detecting higher ranges of
∑PFAS concentrations in fish tissue, particularly PFOS
concentrations, while they are less important when detecting
lower ∑PFAS concentrations.
3.4. Strengths and Limitations. Random forest models

like those used in this study tend to outperform other
predictive models because their averaging structure minimizes
over-fitting issues, which cause many other machine learning
algorithms to lose generalizability.37 These models are useful
for nonparametric and high-dimensional data because they do
not require data transformations and model performance is
relatively insensitive to multicollinearity. Random forests can
also give insights into potentially complex, nonlinear, or
unknown relationships in the data that influence the modeling
output using variable importance plots and partial dependence
plots.50 Based on the application, random forests can be used
to model and predict either continuous or categorical data. As
demonstrated here, classification models may be useful for
applications in which a set threshold concentration for PFAS in
environmental media has been determined. While the
thresholds used here were arbitrary, regulators could use this
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methodology with any threshold concentration value that
allows them to identify hotspots meaningful to their particular
health advisory, chemical, or potentially exposed populations.
However, a limitation of random forests is that they are not

able to predict concentrations outside of the range of the
training dataset. Predicted ∑PFAS concentrations near the
higher range of the training dataset used in this study could
potentially be much higher than the predicted value when
sampled in situ. Therefore, until more data are available to
train more robust models, these predictions are intended to be
used to identify areas with the potential for higher or lower
∑PFAS concentrations in fish tissue that could be prioritized
for future sampling and not as definitive quantitative
concentration predictions.
Additionally, variable importance measures from random

forest models can be sensitive to multicollinearity and varying
magnitudes of predictors.51,52 While the variable importance
results for the random forest regression models in this study
did not appear to be sensitive to the removal of several highly
correlated predictors, this limitation should be considered
when interpreting results and investigating potential sources of
PFAS contamination in the region. Because many of the
industries identified as important in the random forest models
are clustered near larger cities and industrial centers, it is
difficult to tease apart definitive relationships between high
levels of PFAS contamination from these industries due to
their own emissions versus their frequent proximity to other
emitters of PFAS. Conversely, industries appearing to be
unimportant for predicting high levels of PFAS in the models
may have a higher proportion of facility sites located away from
urban industrial areas so that many of those facilities are not as
frequently co-located with other emitters. Therefore, variable
importance results from this study should be used to develop
hypotheses for future study design and sampling strategies to
further investigate the potential importance of these sources
for environmental PFAS contamination.
This study, as well as several other PFAS modeling studies,

uses ∑PFAS as the modeling output in the environmental
media.6,40,41 While many previous studies have focused on
modeling large concentration ranges of PFOS and PFOA
contamination from AFFF, including other PFAS species with
lower concentrations in the predictive models could give
insights into smaller, less studied, or less reported sources.
However, a limitation in using ∑PFAS concentrations which
are dominated by PFOS concentrations is that these insights
from other PFAS chemicals might be missed. Due to the small
sample size of fish tissue samples available for this study, there
was limited information to link specific sources to different
PFAS. With more data and higher percentages of detections of
multiple PFAS in fish tissue, modeling PFAS species separately
could also help improve overall model performance and
identify chemical-specific sources of contamination.
Future fish tissue modeling efforts in this region would also

greatly benefit from additional fish tissue data from diverse
locations. While previous PFAS sampling investigations have
largely focused on areas with obvious high-level PFAS
contamination from AFFF use around airports, fire training
sites, and military installations, data points near other possible
industrial sources would improve understanding of important
drivers of PFAS contamination in fish and help to target of
future remediation efforts. The propensity for previous
sampling efforts being near larger and more populated cities
also highlights a need for additional sampling in rural

communities where other lesser-known or indirect sources
may contribute to environmental contamination affecting the
general population and populations more vulnerable to
exposure because of environmental injustice concerns.
Particularly for fish in the Columbia River Basin, some of

which are migratory species, sampling in additional locations
would also help increase understanding of the fate and
transport of PFAS from various sources in a less-studied and
complex environmental media. Where fate and transport
models can give insights into how far PFAS can travel from
a source in some media like surface water and air, fish tissue
models assessing the spatial extent of PFAS contamination may
be less dependent on factors like water flow direction and
elevation and therefore call for a more data-driven approach.
Fish migration in the Columbia River Basin is also impacted by
numerous hydroelectric dams along the major rivers which
could impact modeling results.53 As the amount of available
fish tissue data increases, modeling studies such as this could
also begin to consider variability in PFAS concentrations in fish
based on the species-specific physiology and trophic level,
which has been observed previously.39−41 Future work could
also account for differences in the accumulation of PFAS
within various parts of fish such as the fillet, skin, and organs,
the latter of which has been observed to contain higher
concentrations.54,55

While more PFAS data currently exists for surface water and
groundwater than fish tissue, studies have shown that the PFAS
compositions in fish do not necessarily reflect that of the
surrounding water, suggesting that prediction models should
be developed for fish independently from water media.39 In
addition to exposure from the surrounding surface water, PFAS
exposure pathways for fish also include sources like sediment
and their diet. This highlights an additional data need for
paired fish tissue and environmental media samples in order to
better understand drivers of fish’s PFAS exposure. The
partitioning and elimination rates of PFAS in fish are also
active areas of research that can inform future models,
sampling, and health advisories.41,56−59

The scarcity of PFAS measurements in fish tissue available in
the Columbia River Basin hindered the robustness and
generalizability of the results from this work but also
highlighted a continued need for data generation and modeling
in the region. Hypotheses generated from this work and the
demonstration of a generalizable, efficient methodology will
help with the facilitation and design of future studies, sampling
campaigns, and investigations of potentially important PFAS
sources in the Columbia River Basin and beyond.
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