
Abstract
Responding to an increasing interest in studying vegetation
changes over time, we review current methods of processing
black and white digital aerial photographs in order to classify
tree cover in pinyon-juniper woodlands. Besides applying com-
monly used clustering and supervised maximum-likelihood
methods, we have developed a new classifier, nearest edge
thresholding, which is unsupervised and based on the princi-
pals of edge detection and density slicing. Comparison of the
three methods’ abilities to predict field values at plot scales of
100 m2 to 900 m2 shows this new method is better or compara-
ble to others at all scales, can be easily applied to digital im-
agery, and has high correspondence with ground-truthed field
values of tree cover.

Introduction
Studying long-term vegetation changes has become increas-
ingly important in understanding the ecology of plant succes-
sion (Severson, 1986), effects of climate change on vegetation
(Allen and Breshears, 1998), land-use impacts (Campbell,
et al., 1997), and as a predictive tool in ecosystem science and
range management (Belsky, 1996). Unfortunately, past data on
plant communities over large areas is sparse, difficult to
combine with modern data, and often produced by personal
testimonial evidence and repeated oblique photography that
is largely qualitative and anecdotal (Creque, et al., 1999).

Fine-scale (1:40000 and larger), black and white aerial
photographs of many areas are widely available and can stretch
back to the early 20th century, long before the advent of satel-
lite-based remote sensing (Avery and Berlin, 1992). The detail
and coverage of these images gives researchers the opportunity
to retrieve high-resolution land-cover data in areas not histori-
cally sampled using conventional techniques. Additionally,
matching historic and modern photographs can enable quanti-
tative analysis of vegetative changes over time, attaching new
importance and timeliness to the ability to process panchro-
matic aerial photographs in order to produce useful vegetation
data.

Review of Aerial Photo Classification Techniques
Many studies in a number of fields have used aerial pho-
tographs as a tool to define historic or modern vegetation
classes on the ground; of these, most have used manual inter-
pretation to derive vegetation classes (Avery and Berlin, 1992;
Fisher and Harris, 1999; Huebner, et al., 1999), and few have
utilized modern digital processing techniques (e.g., Mast,
et al., 1997; Carmel and Kadmon, 1999). However, we are not
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aware of any study that has conducted a comparative assess-
ment of digital processing techniques for black and white
aerial photographs. Digital processing techniques most often
applied include image-level thresholding (Hutchinson, et al.,
2000) or supervised maximum-likelihood classification
schemes (Kadmon and Harari-Kramer, 1999). Other digital
techniques include analysis of zonal or image-level statistics
(Shoshany, 2002; Avery and Berlin, 1992), and, more recently,
pattern-recognition of tree-crowns (Uuttera, et al., 1998; Haara
and Nevalainen, 2002). 

Most simple image classification techniques utilize
imagery based on differences in grayscale levels between
classes (Sonka, et al., 1993). For instance, thresholding is sim-
ply choosing a cutoff value at which all darker values repre-
sent a separate output class than lighter values. To determine
appropriate threshold values, a number of statistical tech-
niques have been utilized or created to clearly differentiate
classes. In some cases this thresholding value is based on user
input, such as manual delineation of classes (Pitas, 2000).

More robust methods of image classification that are
commonly used include unsupervised clustering algorithms
and supervised methods, such as maximum-likelihood (or
bayesian) classification. These methods rely on spectral sep-
aration of feature classes on an image level. K-means and
ISODATA clustering, both commonly used, repeatedly iterate
over arbitrary seed values and reassign pixel values to particu-
lar classes based on their closeness to these seed values,
which are then recalculated to reflect mean class values; as
the number of iterations increase, the mean class values gravi-
tate towards natural breaks in the distribution of image pixels.
Similarly, maximum-likelihood methods attempt to find class
breaks within the spectral range of images. However, these
breaks are based on a priori probabilities of classification into
specific classes, usually based on user input of sample class
values. These probabilities are used to assign pixel values to
classes to minimize error in overall classification (Sonka,
et al., 1993; Pitas, 2000).

An important assumption of these classification schemes
is that classes are spectrally independent over the input image;
they therefore require relatively homogenous class values
throughout. There are a number of ways to ensure this inde-
pendence, each with potential to introduce further errors in
classification. Schowengerdt (1997) suggested that outlying
class values be removed from consideration for classification,
either by deletion from the input image or, in supervised clas-
sification, from the input class signatures. Where possible, it is
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important to preprocess images in such a way that increases
separation of classes, using image normalization or other tech-
niques. However, this has proven problematic, in some cases
creating poorer final classification output than unaltered im-
ages (Carmel and Kadmon, 1998).

Other avenues for processing panchromatic digital images
include fuzzy classification, which may assign multiple class
values and associated probabilities to pixels (Zhang and Kirby,
1997; Brandtberg, 2002), pattern recognition of individual tree
canopies (Larsen and Rudemo, 1998), and other techniques,
some of which enhance existing classifiers (Baillard, et al.,
1998; Carmel and Kadmon, 1999). There are a number of rea-
sons why these techniques have not been overly utilized in
black and white image processing. First, these methods have
been recently incorporated into GIS imagery analysis, often on
multispectral satellite imagery. Because there is much less in-
formation in a single band image, application of such tech-
niques to black and white photos may be difficult, or in some
cases (for example, multispectral analysis) technically impos-
sible. Second, panchromatic imagery is by its nature struc-
turally simpler than multispectral images. The need for more
complicated techniques may be low if available techniques are
sufficient for, or can be adapted to, classification of panchro-
matic imagery with high accuracy.

Vegetation Change in Pinyon-Juniper
Pinyon-Juniper woodlands represent the third largest vegeta-
tion type in North America, and because they often encroach
onto grasslands over time, they have come under close
scrutiny for many years by ranchers and land managers
(Severson, 1986; Belsky, 1996; Allen and Breshears, 1998;
Campbell, et al., 1999; and Creque, et al., 1999). Because they
are a historically dynamic system with broad ecological and
economic importance, it is essential to improve our ability to
quantify the spatio-temporal dynamics in tree cover in order
to provide important ecological information needed for
better management. For these reasons, we sought to develop
methods that would most efficiently classify aerial photogra-
phy into simple classes of tree and background features in
order to extract quantitative data on woodland cover.

In approaching such a project, it is important to evaluate
the applicability of current processing methods to such a
system. Structural parameters of a forest type such as pinyon-
juniper woodlands may constrain the usefulness of specific
classification methods, especially when using historic aerial
photographs. First, even on scales less than hectares, tree
density, size, and species composition may vary greatly. On
environmental gradients of several kilometers, vegetation often
changes from sparsely forested grasslands to dense stands of
mixed pinyon and juniper.

With these constraints in mind, we sought to apply image
classification methods to recent aerial photographs of pinyon-
juniper woodlands in order to determine which were best at
classifying photographs into two groups: areas containing trees,
and those containing background features such as grass, shrubs,
and bare-ground. Initially, rather than focusing on developing
new classification techniques, we applied density-slicing,
ISODATA clustering, and supervised maximum-likelihood
classification to apply to digital aerial photographs, since they
were common in the literature and available in current software
packages. However, visual inspection of the results of these
techniques on a broad scale indicated that they may be insuffi-
cient in classifying trees at a range of densities and across local
variation in image brightness, such as is present at different as-
pects of the same hill. With these issues in mind, we initiated a
more thorough investigation of classification methods that cul-
minated in the design of a new classification method, based on
the techniques of thresholding, edge-detection, and nearest
neighbor classification.
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We present a new algorithm for classification of panchro-
matic aerial photographs into simple vegetation, in order to
differentiate woody vegetation from grasses and bare ground
and derive tree cover. The area of study is a large (167 km2)
area of pinyon-juniper woodland in northern Arizona, USA,
stretching between grasslands at low elevations and pon-
derosa pine forest at high elevations. It contains a number of
volcanic cinder cones, which represent the four cardinal as-
pects and a broad range of slopes. Our method processes each
photo with an edge detection algorithm, and then uses values
classified as tree edges to derive unique threshold values for
each pixel’s final classification. It has been implemented in
both ERDAS© Imagine 8.4� and ESRI ARCGIS© 8.x. To evaluate
this methods’ usefulness against other classifiers and real
world scenarios, regression analysis is used to compare classi-
fiers to ground-truthed field data across the entire range of tree
density. Additionally, we are interested in knowing at what
scale classification is most accurate. Therefore, each classi-
fier’s accuracy is evaluated at an incremental range of spatial
scales from 100 m2 to 900 m2.

Methods
Algorithm Details
Our classification algorithm was designed to correctly quan-
tify trees as small as one pixel wide (in this project, 1 meter
resolution photos were used) in aerial photographs. It was
also designed to work without extensive preprocessing of
input digital photographs, including brightness transforma-
tions and/or normalization, smoothing, and convolution
filtering. Upon detailed examination and testing of current
classification schemes, we created a hybrid algorithm based
on principles of thresholding, edge-based segmentation, and
nearest-neighbor fuzzy classifiers. 

Investigation of the results of image classification using
ISODATA clustering and maximum-likelihood algorithms
showed that misclassification was often attributable to differ-
ent brightness values for the same vegetation class over large
areas. As discussed, a central assumption of these and other
basic image classifiers is that separate classes are represented
by discrete differences between grayscale values. Overcoming
this obstacle and finding unique class divisions present at dif-
ferent places throughout the image could prove to vastly im-
prove classifier accuracy.

Starting with the most basic image segmentation tech-
nique, thresholding (or density-slicing), we used edge detec-
tion to find specific class separation values at any place in
the digital image. As edge-detection works on the differences
between pixels and not their absolute values (Sonka, et al.,
1993), deriving threshold values in this manner ensured local
variation in image brightness would not reduce classification
accuracy of the image.

Simple edge detection in imagery is straightforward; most
edge detectors use simple convolution kernels to quantify the
difference in grayscale values in cells neighboring a pixel. We
chose a simple 3 � 3 orthogonal sobel kernel to calculate edge
values for the input image. This method creates an arbitrary
edge magnitude for any pixel; it does not explicitly define
which pixels are edges. To accomplish this, we used a simple
thresholding technique to define edges; edge values that were
greater than one standard deviation above the mean edge
value for the entire image were defined as edges.

With edge pixels defined, the actual values of these pixel
values represented specific cutoff values for tree canopy
throughout the image. In order to utilize these values to create
a specific threshold value for each image pixel, we used a mod-
ified nearest neighbor algorithm as used in some fuzzy classifi-
cation techniques (Carmel and Kadmon, 1999). Assuming that
the closest edge values for a pixel most accurately described
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the tree to background threshold value for that area, aggregat-
ing nearby edge values could produce a unique threshold cut-
off value for any pixel. We first calculated the distance to an
edge cell for every pixel in the image. We then used these dis-
tance values to determine the maximum distance to the nearest
edge within the image. In order to maximize efficiency, we
used the mean distance to an edge for all pixels plus three
standard deviations of that mean instead of the absolute maxi-
mum (Ott, 1993).

With both edges and the distance to edges defined for the
input image, a specific threshold value could be created for
any pixel. This was accomplished by calculating the mean
value of all edge pixels within the window specified by the
maximum distance value derived above for every pixel. This
produced a grid of specific threshold values for each input
image. The input image was then classified using these values:
if a pixel was darker than its overlaying threshold value, it
was classified as tree area; otherwise, it was classified as some
other background feature. This algorithm was implemented in
ERDAS© Imagine 8.4 using the spatial modeler tools and was
also written in ARC© macro language for use in ARCGIS© Work-
station 8.2.

Image Processing
We obtained digital orthophoto quadrangles with one meter
resolution created by the USGS (1 meter pixel size) from aer-
ial photographs taken between July 1997 and October 1998 for
use as test images (Figure 1). The specific requirements of
such imagery are that the sun angle is thirty degrees or higher
to reduce potential shadow effects on the ground, cloud cover
must be absent, and atmospheric haze must be minimal. 

Shading effects are a concern in analyzing air photos,
including shading caused by the position of the sun and large
topographic features such as hills and mountains (Shoshany,
2002). Because our method determined threshold for tree to
non-tree values on a local level, large features were not a prob-
lem. Additionally, in the area studied, the dominant species
were very rarely over four meters tall. This reduced the influ-
ence of shading effects from individual trees in determining
percent cover.

Accuracy Assessment
To assess accuracy of the tree-detection algorithm, we com-
pared derived percent cover values from 1997 aerial photo-
graphs to ground-truthed for field percent cover values in the
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Figure 1. The marked places indicate where transects were erected for use in ground-truthing classification methods. Each
transect was a 30 by 30 m square separated into individual 10 by 10 m sections. The total area covered by the map below is
approximately 160 km2.
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same areas, recorded between 1998 and 2003. Field data was
obtained for nine transects that were randomly selected in
the area covered by the photographs (Figure 1) representing
a range of woodland densities and surface topography. Each
transect consisted of nine 100 m2 sections in a 3 � 3 square.
In each 100 m2 section, the four edges were permanently
marked with rebar and geographic positions recorded using
a differentially-corrected Trimble Geoexplorer 3®. Tree
canopy area of pinyon (Pinus edulis) and juniper (Juniperus
monosperma) was determined by randomly selecting a point
at the base of the canopy and estimating the average canopy
extent along a decimeter-incremented pole. We then placed
the pole perpendicular to the initial position and estimated
average canopy diameter to the nearest decimeter and calcu-
lated the average of the two values to obtain tree canopy di-
ameter. We presumed each tree was a circle and calculated
canopy area. Two or more tree canopies that overlapped were
calculated as a single area of canopy coverage. Summing these
measurements provided a single value of canopy cover per
section, combining pinyon and juniper.

These images were processed in ARCGIS© 8.2 using the
algorithm detailed above (Figure 2). Once the images were
reclassified into tree versus non-tree pixels, we derived a per-
cent tree cover value for each 100 m2 section. Additionally, we
processed each image using an unsupervised ISODATA clus-
tering algorithm with a 0.950 convergence threshold and a
supervised, maximum-likelihood classification (Figure 2). We
manipulated parameters of both methods in order to produce
the best possible results for each, based both on information
from the literature (Schowengerdt, 1997) and from trial runs
of each classifier. The final input parameters for the clustering
classification was an ISODATA algorithm with four output
classes, a 95% convergence threshold, and initial seed values
initialized from image statistics. For the maximum-likelihood

classification, we created three pairs of input signatures for
tree and background at low, medium, and high tree densities,
each comprised of up to ten individual areas.

We used regression analyses to test the accuracy of each
classification method against field data and across increasing
study plot size. Because of the nested nature of our field study
plots, we used a modified bootstrap method (Efron, 1993) to
resample data, in order to reduce autocorrelation in the data
values yet still ensure all field data was fully utilized. The
outline of these methods are as follows:

1. Select one 10 � 10 meter section at random out of each 
30 � 30 meter study plot, for a total of nine 10 � 10 meter
sections, one for each of the nine study plots.

2. Calculate the regression equation and R2 correlation coeffi-
cient for these nine points.

3. Replace these nine values many times, each time calculating
mean regression coefficients for all samples.

4. Increase the scale of the analysis from 100 m2 to 200 m2 and
repeat steps 1–3; increase repeatedly in 100 m2 until the en-
tire 30 � 30 meter (900 m2) plot is sampled.

In order to ensure that the true correlation between ground-
truthed and photo-derived values was determined and all pos-
sible data combinations were used, we ran this for each classi-
fier through 10,000 iterations. Once we derived tables of slope
and correlation for all three methods at all scales, we com-
pared these values among three methods to determine which
best-predicted field data values.

Results
We analyzed the nearest edge thresholding method for accu-
racy at increasing scale and found it performed well at a plot
size of even 100 m2. The average R2 value for 10,000 regres-
sions made of randomly selected points, one from each of the
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Figure 2. Examples of the three classification techniques detecting tree
canopies over a small portion of a digital orthophoto. The outlined boxes are
the 30 by 30 m transects showing the divisions into 10 by 10 m sections.
The first picture (a) is the aerial image denoting pinyon and juniper canopies,
the other images are canopy designations using classifications based on
(b) nearest edge threshold, (c) maximum-likelihood and (d) ISODATA cluster-
ing. Lighter areas represent trees, and darker values are non-tree pixels.
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nine transects, was 0.823, with a slope of 0.955 and a y-
intercept of 0.050 (Table 1). Correlation coefficient values
increased steadily up to a scale of 900 m2, where the R2 was
0.983, the slope 1.175, and the y-intercept �0.049 (Table 1).

Comparison of different classification methods showed
that nearest edge thresholding was better or comparable to
the other two methods in predicting ground-truthed values
of percent cover in all measurements (Table 1, Figure 3). At
all scales, nearest edge thresholding values accounted for a
greater amount of variation in field data than the clustering
and maximum-likelihood methods (Figure 3). Additionally,
the slope and y-intercept values were consistently close to
one and zero, respectively, indicating a one-to-one relation-
ship between field and photo-derived values (Table 1). 

A repeated measures ANOVA was performed for each of
the three classification schemes at scales of 100 m2 and 900
m2, showing that nearest edge thresholding performed better
than the other methods in these cases. At 100 m2, nearest edge
thresholding values were non-significantly different from field
values, with a p-value of 0.053; the values for clustering and
maximum-likelihood method were both different from field
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Figure 3. Correlation coefficient (R2) values for the nearest
edge thresholding, maximum-likelihood, and ISODATA clus-
tering methods at increasing scales of 100 m2 intervals. 
Nearest edge thresholding was the best predictor at all
scales.

TABLE 1. COMPARISON OF THREE CLASSIFICATION TECHNIQUES PREDICTING WOODLAND COVER ACROSS A RANGE OF SPATIAL SCALES. THE REGRESSION COEFFICIENT
VALUES FOR THE NEAREST EDGE THRESHOLDING, MAXIMUM-LIKELIHOOD, AND ISODATA CLUSTERING CLASSIFIERS FROM 100 M2 TO 900 M2 SHOWS THAT NEAREST EDGE
THRESHOLDING IS THE BEST OVERALL PREDICTOR OF PINYON-JUNIPER WOODLAND AREA. THE MAXIMUM LIKELIHOOD METHOD IS INTERMEDIATE IN PREDICTING WOODLAND

COVER, AND ISODATA CLUSTERING PROVIDED THE LOWEST QUALITY PREDICTION OF VARIATION IN WOODLAND COVER.

Spatial Scale 
Classification Regression
Method Statistics 100 m2 200 m2 300 m2 400 m2 500 m2 600 m2 700 m2 800 m2 900 m2

Nearest Edge Thresholding R2 0.823 0.906 0.935 0.953 0.965 0.972 0.977 0.981 0.983
Slope 0.944 1.049 1.112 1.134 1.143 1.154 1.159 1.168 1.175
Y-intercept 0.050 0.050 0.043 0.031 0.019 0.003 �0.012 �0.030 �0.049

Maximum Likelihood R2 0.762 0.859 0.893 0.914 0.928 0.938 0.945 0.950 0.954
Slope 0.635 0.699 0.739 0.751 0.756 0.761 0.764 0.770 0.775
Y-intercept 0.041 0.050 0.056 0.061 0.064 0.067 0.070 0.069 0.068

ISODATA Clustering R2 0.736 0.821 0.861 0.881 0.893 0.900 0.905 0.908 0.911
Slope 0.970 1.081 1.155 1.182 1.193 1.204 1.209 1.216 1.223
Y-intercept 0.161 0.264 0.351 0.439 0.529 0.618 0.707 0.795 0.881

values with p � 0.017. At 900 m2, both maximum-likelihood
and nearest edge thresholding values were not significantly
different from field values, with p-values of 0.081, and 0.099,
respectively; clustering values were significantly different
with p � 0.005.

Discussion
Results from comparison of field data and photo-derived
values for all classifiers showed that they performed satisfac-
torily at a variety of scales. Nearest-edge thresholding was a
better predictor of field determined canopy areas than maxi-
mum-likelihood or ISODATA clustering, as shown by the re-
peated measures ANOVA. Additionally, nearest edge thres-
holding may be more appropriate in most cases because it is
efficient, can be run on large data sets unsupervised, and is
comparable to or out-performs other classifiers in all cases.

Examination of slope and y-intercept values for the re-
gression results indicates to what extent each method over
and underestimates field values at any scale. Since values for
these coefficients changed in a constant direction for each
classifier at increasing scale, an investigation of the extreme
scales (100 m2 and 900 m2) shows the range of variation in
slope and y-intercept (Table 1). Slope values for nearest edge
thresholding varied from 0.944 at the 100 m2 scale to 1.175 at
900 m2. These values, coupled with y-intercept values ranging
from 0.050 to �0.049 show that nearest edge thresholding
may overestimate low density percent cover and underesti-
mate high density percent cover at small scales, and do the
opposite at large scales. However, these values are consis-
tently close to 1 and 0, respectively, making these errors fairly
small. The coupled slope and intercept values for the other
methods prove to be more problematic. While clustering slope
values are close to 1 at small scales, the y-intercept is 0.161 at
a scale of 100 m2 and 0.881, at a scale of 900 m2, values which
introduce significant errors in field data correspondence. Like-
wise, maximum-likelihood intercept values range from 0.041
to 0.070, which are comparable to nearest edge thresholding,
but slope values range from 0.635 to 0.775, which all underes-
timate percent cover at high density. 

We compared classifiers and accuracy across plot scale in
order to determine at what plot size classifiers performed best.
Of high importance to projects that involve aerial photo clas-
sification is the size that must be used for field plots to guar-
antee high correspondence with classified values. While there
is no definite cutoff point for high classification accuracy, re-
searchers may choose study-specific cutoff values for regres-
sion coefficients which data must meet. For instance, if an R2

of 0.90 and higher, a slope within 0.25 of 1, and a y-intercept
within 0.25 of 0 is required, the appropriate scale would be
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200 m2 plot size for nearest edge thresholding, 400 m2 for
maximum-likelihood classification, and 800 m2 for ISODATA
clustering.

Overall, nearest edge thresholding outperformed ISODATA
clustering and to a lesser degree, maximum-likelihood classifi-
cation. We suggest that nearest edge thresholding is a more ap-
propriate method to use in many situations. Since it is an un-
supervised classifier that can be used out of the box with no
prior knowledge of photo characteristics or processing parame-
ters, it can be much more easily applied to digital photographs
by researchers who may not have a strong background in image
processing, particularly those interested in combining historic
and modern aerial photographs into quantitative data sets for
use in ecological modeling. Because it was developed for
panchromatic photos, it is more specific and useful in extract-
ing usable vegetation coverage from historical aerial photos
than many recently developed methods focusing on multi-
spectral aerial and satellite imagery. With the current interest
in utilizing historic aerial photographs to detect vegetative
change across decades, it may prove of great use in such areas
as landscape ecology, land management, urban planning, and
climate-change research.
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