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Abstract The episodic nature of water availability in arid
and semiarid ecosystems has significant consequences on
belowground carbon and nutrient cycling. Pulsed water
events directly control belowground processes through
soil wet-dry cycles. Rapid soil microbial response to
incident moisture availability often results in almost
instantaneous C and N mineralization, followed by shifts
in C/N of microbially available substrate, and an offset in
the balance between nutrient immobilization and miner-
alization. Nitrogen inputs from biological soil crusts are
also highly sensitive to pulsed rain events, and nitrogen
losses, particularly gaseous losses due to denitrification
and nitrate leaching, are tightly linked to pulses of water

availability. The magnitude of the effect of water pulses on
carbon and nutrient pools, however, depends on the
distribution of resource availability and soil organisms,
both of which are strongly affected by the spatial and
temporal heterogeneity of vegetation cover, topographic
position and soil texture. The ‘inverse texture hypothesis’
for net primary production in water-limited ecosystems
suggests that coarse-textured soils have higher NPP than
fine-textured soils in very arid zones due to reduced
evaporative losses, while NPP is greater in fine-textured
soils in higher rainfall ecosystems due to increased water-
holding capacity. With respect to belowground processes,
fine-textured soils tend to have higher water-holding
capacity and labile C and N pools than coarse-textured
soils, and often show a much greater flush of N
mineralization. The result of the interaction of texture
and pulsed rainfall events suggests a corollary hypothesis
for nutrient turnover in arid and semiarid ecosystems with
a linear increase of N mineralization in coarse-textured
soils, but a saturating response for fine-textured soils due
to the importance of soil C and N pools. Seasonal
distribution of water pulses can lead to the accumulation
of mineral N in the dry season, decoupling resource supply
and microbial and plant demand, and resulting in increased
losses via other pathways and reduction in overall soil
nutrient pools. The asynchrony of resource availability,
particularly nitrogen versus water due to pulsed water
events, may be central to understanding the consequences
for ecosystem nutrient retention and long-term effects on
carbon and nutrient pools. Finally, global change effects
due to changes in the nature and size of pulsed water
events and increased asynchrony of water availability and
growing season will likely have impacts on biogeochem-
ical cycling in water-limited ecosystems.
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Introduction

Although 30 years have passed since Noy-Meir (1973,
1974) highlighted how pulsed water events affect most
aspects of ecosystem functioning in deserts, many
questions remain regarding the importance of water pulses
for controlling biogeochemical cycling in water-limited
ecosystems. Episodic water availability clearly affects
element cycling in arid and semiarid ecosystems (Schimel
and Parton 1986; Gebauer and Ehleringer 2000), but to
date, information on the quantitative effects of water
pulses on belowground processes is relatively scarce. In
part, the ephemeral nature of the effect of pulses on
nutrient fluxes, such as gaseous losses due to ammonia
volatilization during a small rain event (Schlesinger and
Peterjohn 1991), or the instantaneous response of soil
organisms to changes in moisture (Freckman et al. 1987;
Schwinning and Sala 2004) contribute to the difficulty in
obtaining reliable information on the effects of water
pulses on ecosystem functioning. Moreover, essential to
our understanding of how pulses affect belowground
processes is the need to identify how water pulses interact
with intrinsic spatial and temporal heterogeneity of carbon
and nutrient pools, the differential effects of water pulses
on soil biota, and the impact of water pulses on the balance
between resource inputs and outputs in both space and
time.

In ecosystems that receive less than 600 mm mean
annual precipitation, primary production is thought to be
largely constrained by water availability (Noy-Meir 1973;
Lieth 1975; Webb et al. 1978; Sala et al. 1988), which is,
in part, controlled by the nature and timing of rainfall
events. At the same time, variation in precipitation input
affects most other ecosystem processes as well. The
frequency and periodicity of water pulses and their control
on ecosystem processes can be examined at a number of
scales (Schwinning and Sala 2004), including the timing
and size of small rainfall events within a season (Sala and
Lauenroth 1982), the seasonal distribution of rainfall (Frith
and Frith 1990; Amundson et al. 1994; Reynolds et al.
1999; Jobbágy and Sala 2000), or the inter-annual
variability in precipitation (Lauenroth and Sala 1992).

The objective of this review is to examine how water
pulses affect biogeochemical cycles in arid and semiarid
ecosystems, and to evaluate the importance of pulsed
water events as a control on belowground processes. For
the purposes of this review, we have chosen to focus on
the shorter-time scale of pulsed rain events, examining
how this variation in water availability affects biogeo-
chemical cycling. In addition, we will explore our current
gaps in knowledge, future directions of research, and the
potential interaction with human-induced global change.

Water pulses in arid and semiarid ecosystems

The episodic nature of water input in arid and semiarid
ecosystems has direct consequences on most ecosystem
processes, and indirect consequences through its interac-

tion with other ecosystem characteristics. For example,
water pulses may directly affect the frequency and
duration of ‘wet-dry cycles’ in the soil, but these wet-
dry cycles may indirectly control activity of soil organ-
isms, which will ultimately determine carbon and nitrogen
turnover. In addition, the effect of pulses of water on
different ecosystem compartments may not be equal.
Cryptobiotic organisms at the soil surface can often
respond to small but relatively frequent rainfall events that
wet only the top layer of soil when plants cannot, leading
to a pulse after pulse phenomenon, whereby nitrogen
availability may increase at a moment when plants are not
able to capitalize on the available resource (Singh et al.
1989). This asynchrony of resource availability due to the
nature of pulsed water events may be central to under-
standing the consequences for ecosystem nutrient retention
and long-term effects on carbon and nutrient pools.

The spatial and temporal heterogeneity of resources and
soil biota, however, must be considered in order to
understand the effects of water pulses on biogeochemical
cycles. The distribution of soil resources is heterogeneous
because of the patchy distribution of vegetation, resulting
in the well-documented “islands of fertility” and a
discontinuous distribution of both water and nutrient
resources (Charley and West 1975; Barth and Klemmed-
son 1978; Virginia and Jarrell 1983; Jackson and Caldwell
1993; Halvorson et al. 1994; Schlesinger et al. 1996;
Zaady et al. 1996a; Aguiar and Sala 1999). Soil physical
characteristics including differences in soil texture and
porosity also contribute to differences in water infiltration
rates and rainfall redistribution and surface runoff (Laio et
al. 2001). Furthermore, the variable nature of life forms
present in arid landscapes (i.e. shrubs, clumps of grass,
bare and crusted interspaces) results in spatial heteroge-
neity of C and N pools. For example, protection from
erosion by wind and water under shrubs, and higher
vegetative cover results in increased inputs of carbon and
nutrients (Vinton and Burke 1995), and the rate of cycling
can change with life form or species (Chen and Stark
2000).

Due to this discontinuous vegetative cover, soil biota
primarily occurs in vegetated patches (Santos et al. 1978;
Whitford and Sobhy 1999; Belnap and Phillips 2001), and
the distribution of microbial biomass is also heterogene-
ous, with higher concentrations of microbial populations
and increased activity in vegetated patches than in bare
soil (Gallardo and Schlesinger 1992; Bolton et al. 1993;
López et al. 2003). This spatial discontinuity of microbial
biomass and organic matter results in large differences in
biogenic trace gas emissions, which are often heavily
concentrated in shrub patches (Bolton et al. 1990; Bolton
et al. 1993). In addition to heterogeneity in spatial
distribution, soil fauna differ in their responses to soil
drying and water pulses due to differences in desiccation
resistance, drought avoidance and other short-term phys-
iological changes (Kieft et al. 1987; Van Gestel et al. 1993;
Mamilov and Dilly 2002), suggesting that the pulsed water
availability could serve as a selective mechanism in arid
and semiarid ecosystems for organisms with higher
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resistance to wet-dry oscillations (Schwinning and Sala
2004). For example, protozoan activity is limited to
periods when soil moisture is relatively high (>−0.1 MPa)
and movement is not limited by thin water films (Griffin
1981; Papendick and Campbell 1981). At the same time,
nematodes and microarthropods are more tolerant of dry
conditions, and do not always show a clear response to
wetting events (Whitford et al. 1981).

Soil wet-dry cycles and carbon and nutrient dynamics

One of the principal consequences of the stochastic nature
of water pulse inputs in arid and semiarid ecosystems is
that surface soils experience periods of drying followed by
relatively rapid rewetting. Drying-rewetting cycles are
often most pronounced in arid and semiarid ecosystems
with a strongly seasonal precipitation, but wet-dry cycles
commonly occur in a variety of ecosystems (Kieft et al.
1987; Groffman and Tiedje 1988; García-Méndez et al.
1991; Mummey et al. 1994; Cui and Caldwell 1997; Ryan
et al. 1998; Pulleman and Tietema 1999). As with
precipitation events, wet-dry cycles can occur on different
temporal scales. In highly seasonal ecosystems, such as
tropical deciduous forests, one or two wet-dry cycles can
take place within a year with each period lasting between
four to six months (Garcia-Méndez et al. 1991; Davidson
et al. 1993; Jaramillo and Sanford 1995). Soil wet-dry
cycles can occur at much faster intervals, however,
encompassing days or even hours between sparse rain
events (Sala and Lauenroth 1982; Whitford et al. 1986).

The effects of drying and rewetting cycles on
biogeochemical processes have been studied in both
agricultural and natural systems. These wet-dry cycles
affect all aspects of carbon and nutrient turnover, including
C and N mineralization (e.g. Birch 1964; Agarwal et al.
1979; Seneviratne and Wild 1985; Degens and Sparling
1995), microbial biomass (Bottner 1985; Kieft et al. 1987;
Van Gestel et al. 1993), gaseous losses (Davidson et al.
1993; Mummey et al. 1994; Smart et al. 1999; Stark et al.
2002), denitrification (Groffman and Tiedje 1988; Peter-
john and Schlesinger 1991), and ammonia volatilization
(Schlesinger and Peterjohn 1991; Heckathorn and Delucia
1995). A summary of changes in ecosystem processes and
carbon and nitrogen pools when a pulsed water event
occurs is shown in Fig. 1, which includes increased fluxes
of C and N, changes in pool sizes of inorganic N and
increased losses of C and N occur as a dry soil becomes
wetted.

We present a summary of studies relating the effects of
wet-dry cycles on soil C and N dynamics both under
laboratory conditions (Table 1) and in field studies
(Table 2) for soils from arid and semiarid ecosystems.
What is most evident from both tables is that for soils that
have not received recent organic matter additions, wet-dry
cycles initially stimulate C and net N mineralization
(usually within the first few hours for C mineralization),
diminish microbial biomass during drying but stimulate
microbial growth after wetting, and the wet-dry cycle itself

results in higher net N and C mineralization when
compared to continuously moist soils. We found one
exception to this pattern of increased C and N mineraliza-
tion, where Degens and Sparling (1995) found no increase
in organic C mineralization in a sandy loam soil subjected
to six wet-dry cycles.

Both wet and dry phases have effects on soil processes,
but it is the cyclical dynamic that determines the particular
responses when compared to constant moisture conditions.
For example, accumulation of inorganic N usually occurs
during dry periods because diffusion of ions is severely
restricted in thin water films of dry soil and because sinks
of inorganic N are limited by reduced microbial growth
and limited plant uptake (Barber 1995; Stark and Firestone
1995). In addition, a portion of the microbial biomass is
killed under dry conditions (Bottner 1985), which is
readily decomposed by surviving organisms when the soil
is rewetted. Rapid change in soil water potential associated
with rewetting may cause microbes to undergo osmotic
shock, including microbial cell lysis (Bottner 1985; Van
Gestel et al. 1993) or a release of intracellular solutes
(Halverson et al. 2000). When dry soil is rewetted,
diffusion is no longer restricted and the accumulated labile
soil organic matter (SOM) and dead microbial biomass,
with their low C:N ratios, become available for microbial
activity. The availability of low C:N substrates, along with
favorable conditions for microbial growth, lead to high
gross and net N mineralization, large pulses of CO2 and
gaseous fluxes of N, and a pulse of increased C and N
availability (Kieft et al. 1987; Peterjohn and Schlesinger
1991; Mummey et al. 1994). Alternatively, drying-

Fig. 1 Schematic outline of biogeochemical cycles of C and N in
arid and semiarid ecosystems under A dry conditions, and B after a
rainfall pulse. Width of arrows indicates the relative importance of
these processes in the two situations. Dotted lines indicate that flows
are either very low or undetectable. During interpulse periods,
turnover of both C and N slows, microbial death occurs, and plant
uptake is restricted, leading to an increase in soil NO3

-and labile
organic matter. When soils are wetted, stimulation of C and N
mineralization and large changes in the relationship of soil microbial
biomass and labile organic matter pools are commonly observed,
and the potential for loss of labile N increases due to increased
nitrification, denitrification and leaching
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rewetting cycles may cause the disruption of soil
aggregates, exposing physically protected organic matter
(Adu and Oades 1978; Lundquist et al. 1999), and
increasing the accessibility of substrate that can be rapidly
mineralized (Fisher et al. 1987; Jackson et al. 1988;
Davidson et al. 1993; Appel 1998).

The range of the responses in Table 1 may be explained,
in part, by the different temperatures reached during the
drying phase (between ambient and oven-dried tempera-
tures at 110°C), the duration of the drying period, and the
time between wetting and drying cycles, which can affect
the production of water-soluble substrates and the survival
of microbial populations (Fierer and Schimel 2002). The
number of wetting-drying events alters the overall eco-
system response, with a number of studies showing a
continued increase in C and N mineralization with
successive wet-dry cycles, while others showed dimin-
ished response after a single wet-dry cycle. More import-
antly, however, is that the size of the flush of carbon and
nitrogen produced from these wet-dry cycles appears to
depend in large part on the labile C and N soil pools
(Tables 1, 2, Van Gestel et al. 1993; Schaeffer et al. 2003).
In both field and laboratory studies, the increased substrate
availability in finer textured soils, due to higher organic
matter content, resulted in a qualitatively larger response
to wet-dry cycles than in sandy soils with low organic
matter content.

While many fewer studies have focused on the effect of
wet-dry cycles on phosphorus cycling, Lebedjantzev
(1924) observed almost 80 years ago that repeated drying
and moistening of a soil brought about a substantial
release of P, in addition to the more well documented
release of inorganic N. More recently, Turner and
Haygarth (2001) found an increase in the amount of
water-soluble phosphorus in grassland soils as a conse-
quence of drying and rapidly rewetting the soil. This
phosphorus was predominantly in organic form and was
positively correlated with the microbial-P biomass. The
authors suggested that this newly available P was derived
from soil microbial biomass, and was released by osmotic
shock and cell lysis upon rewetting of the soil (Turner and
Haygarth 2001). Another study supports the connection
between microbial P and P release, where the size of the
flush of inorganic P after rewetting a dry soil was strongly
correlated with microbial P before rewetting (Grierson et
al. 1998). In contrast, Cui and Caldwell (1997) analyzed
the effect of wetting a dry soil in field conditions of a
semiarid grassland, and they found that water pulses did
not significantly affect phosphate concentration nor the
mycorrhizal infection rate.

Microbial dynamics and control on the mineralization-
immobilization balance of N

In water-limited ecosystems, N mineralization and immo-
bilization by soil microbial communities are regulated
primarily by three variables: (i) the ratio of C:N in organic
substrates utilized by soil microorganisms; (ii) the N-useS
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efficiency of the microbial community; and (iii) the
growth efficiency, or C-use efficiency, of the microbial
community. Microbial grazing by protozoans, nematodes,
and other metazoa also causes N mineralization by
promoting turnover and release of bacterial and fungal N
(Clarholm 1985); however, in this section we will focus on
the effect of water pulses on activity of soil bacteria and
fungi.

The C:N of microbial substrates, microbial N-use
efficiency, and microbial growth efficiency (GE) interact
to regulate N mineralization and N immobilization rates
over a broad range of conditions. Of these three factors,
the C:N ratio of microbial substrates probably has the
largest impact on the balance between N-mineralization
and immobilization because C:N ratios vary widely among
different substrates (Fig. 2). For example, dead microbial
biomass may have a C:N as low as 4:1, whereas the C:N
of roots ranges from 30:1 to 70:1, and the C:N of woody
branches from desert shrubs may be greater than 100:1.
Microbial substrates with low C:N will contain more than
enough organic N to meet microbial N demands, and the
excess N will be mineralized; whereas high C:N substrates
will lead to immobilization of N (Fig. 2). Seasonal
changes in substrate C:N may occur following litterfall,
root senescence, turnover of microbial biomass, or release
of protected soil organic matter. For example, soil
moisture pulses cause release of microbial cytoplasm
into the soil solution (Kieft et al. 1987) and release of non-
microbial soil organic matter (Appel 1998). Microbial
degradation of these low C:N materials results in N
mineralization, and may explain the commonly observed
pulse of mineralization following wetting of arid and
semiarid soils (Tables 1, 2, Birch 1958, 1959; Bloem et al.
1992; Zaady et al. 1996b; Cui and Caldwell 1997);
however, if soil wetting follows addition of high C:N
organic matter, N immobilization would be stimulated
(Recous et al. 1990; Appel 1998). This explains the
tendency for litter layers to immobilize N following
wetting, even while the mineral soil is mineralizing N
(Table 2).

Microbial N-use efficiency (the amount of N necessary
to produce one unit of microbial biomass C) is essentially
the inverse of the C:N of microbial tissue, and is
determined to a large extent by the structure of the soil
microbial community. Bacteria produce biomass with a
lower C:N ratio than fungi (Paul and Clark 1996), and thus
immobilize more N per unit of C assimilated than fungal-
dominated communities. The microbial community struc-
ture may shift with season. Fungi are generally more
tolerant of desiccation than bacteria (Adebayo and Harris
1971; Wilson and Griffin 1975), and thus the relative
abundance of fungi may increase during the dry season.
Such a shift in community structure, and thus N-use
efficiency, may partially explain the tendency for slow
rates of net N mineralization during dry seasons of many
ecosystems. The response of mineralization or immobili-
zation to a wetting event, however, may be determined by
the relative growth rates of bacterial and fungal popula-
tions following wetting. For example, if bacterial popula-

tions expand first, followed by expansion of fungal
populations, one would expect an initial phase of immo-
bilization to be followed by a milder phase of immobi-
lization or even mineralization.

Microbial growth efficiency (GE) is also likely to
influence the mineralization-immobilization balance be-
cause it shows large temporal variation. The GE is the
fraction of the organic C utilized by microorganisms that is
actually converted into microbial biomass (as opposed to
being respired as CO2). The greater the GE, the greater the
N-demand, and the more likely the N content of organic
substrates will not meet microbial needs. Thus, high GE
will promote N immobilization of inorganic N, whereas
low GE will promote N mineralization. Microbial GE
tends to be greatest (0.3–0.8) when environmental
conditions are optimal for growth, and lowest (<0.1)
when microbial populations are growing slowly, or not at
all, and must use substrate supplies to meet maintenance
energy requirements. Seasonal shifts in GE partially
explain the slow accumulation of inorganic N in dry
soils (low GE under adverse conditions) and the draw-
down of inorganic N pools in continuously moist soils
(high GE under optimal conditions). If a sudden water
pulse in a dry soil results in an increase in available
nutrients to the microbial community, high GE should
promote N immobilization. However, if nutrient supplies
become rapidly depleted GE would soon decline, and a
phase of N mineralization would begin. Changes in GE
appear to be less important in regulating the mineraliza-
tion-immobilization balance in fungal-dominated commu-
nities than in bacterial-dominated communities.

The observation that wetting of dry soils usually
stimulates a phase of net N mineralization (Tables 1, 2)
suggests that the C:N of microbial substrates is the
dominant factor regulating the mineralization-immobiliza-
tion balance; and that drying-wetting cycles stimulate
release of organic matter with a low C:N. However, to

Fig. 2 The role of microbial community structure, and substrate
characteristics in regulating N-mineralization and immobilization
rates in soil microsites. Depicted are the relationships occurring at
maximum microbial growth efficiency (GE)
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obtain a more complete picture of factors regulating N
mineralization, soil heterogeneity must also be considered.
Soil microsites may differ widely in substrate C:N (Van
Groenigen et al. 2002), as well as microbial GE and N-use
efficiency. Differential inputs of litter from aboveground
vegetation and roots concentrate the labile pools of C and
N in vegetated patches (Vinton and Burke 1995; Kelly et
al. 1996; Hook and Burke 2000). Fine-scale microsite
variability may allow N mineralization and immobilization
to occur simultaneously in even small soil volumes (Chen
and Stark 2000). These patches may be large enough to be
exploited by plant roots or mycorrhizae, or the net
mineralization rate in several patches may determine N-
availability to plants following water pulses.

Inverting the inverse texture hypothesis

The inverse texture effect introduced by Noy-Meir (1973)
suggests that soil texture in arid and semiarid ecosystems
plays a pivotal role in determining the efficiency of water
uptake by plants, due to the effect of texture on soil
evaporation. In arid zones, evaporation from the upper
layers—rather than free drainage from subsurface horizons
—causes the largest loss of soil moisture. Sandy soils have
less runoff and more infiltration. Because of lower water
holding capacity, infiltration is deeper and loss by
evaporation is smaller. As a result, primary production in
very arid regions should be greater on coarse-textured than
on fine-textured soils due to relatively higher water
availability in sandy soils. Sala et al. (1988) tested the
inverse texture hypothesis synthesizing a large data set and
developed an empirical regression model for the Great
Plains region of North America. The authors found that
when annual precipitation was less 370 mm, sandy soils
were more productive than loamy soils of finer texture. At
the same time, when annual precipitation exceeded
370 mm, the model predicted that sandy soils would be
less productive than fine-textured soils (Fig. 3A).

But how does the inverse texture effect apply to
belowground processes? Several studies have examined
the effect of soil texture on ecosystem processes in arid
and semiarid ecosystems (Herlihy 1979; Schimel and
Parton 1986; Burke 1989; Burke et al. 1989; Van Veen and
Kuikman 1990; Hook et al. 1991; Hassnik 1997; Strong et
al. 1999; Hook and Burke 2000; Kaye et al. 2002) and
modeled results show a marked soil texture effect on soil
moisture dynamics in semiarid shrublands (Fernández-
Illescas et al. 2001). Studies in the Great Plains of North
America have shown that total C and N pools positively
correlated with clay content (Kaye et al. 2002), and that
most parameters of biogeochemical cycling, including
total C and N, particulate organic matter, and mineraliz-
able C and N in soils from shortgrass steppe were
negatively correlated with soil sand content (Hook and
Burke 2000). In addition, fine-textured soils tend to
increase water-holding capacity (Hook and Burke 2000),
which means that water availability is greater at the soil
surface, where the vast majority of microbial activity

occurs (Foster 1988). Fine-textured soils have the capacity
to preserve or protect organic matter and microbial
biomass, which may allow greater nutrient retention
(Van Veen et al. 1984; Gregorich et al. 1990). As a result,
N mineralization is often greater in fine-textured soils than
coarse-textured soils under the same climatic conditions,
demonstrated both for empirical studies (Appel 1998;
Degens 1998) and modeling results (Fernández-Illescas et
al. 2001).

These studies suggest a corollary hypothesis for the
effect of soil texture on belowground processes in water-
limited ecosystems, which is different than for primary
production (Fig. 3B). Fine-textured soils reduce water
availability for primary production due to increased
evaporative losses in arid ecosystems (<370 mm; Sala et
al. 1988; Fig. 3A), but finer-textured soils in the same
climatic regime may actually experience increased nutrient
availability relative to coarse-textured soils. We suggest
that N mineralization would increase linearly along a
gradient of precipitation in coarse-textured soils concur-
rent with increasing soil C and N pools and increasing
water availability, whereas fine-textured soils would show
a saturating relationship due to the interaction of pool size
and water availability.

Fig. 3 Relationship between soil texture and ecosystem processes
along a gradient of precipitation. A Relationship between mean
annual precipitation and net primary production as hypothesized by
Noy-Meir (1973) and empirically demonstrated by Sala et al.
(1988). The point at which the lines cross for fine- and coarse-
textured soils comes from regressions developed in Sala et al.
(1988). B Hypothesized relationship of the effect of soil texture on
N mineralization along a gradient of precipitation, which differs
from the relationship with net primary production. In coarse-
textured soils, N mineralization increases linearly along a precip-
itation gradient due to increased water availability and increased C
and N pools. In fine-textured soils, N mineralization increases much
more rapidly due to increased water holding capacity, and turnover
and size of C and N pools. The difference between soil textures
diminishes in humid sites, and the effects on water retention and C
and N pools are dampened
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The difference in potential N mineralization between
coarse- and fine-textured soils would be greatest in arid
ecosystems due to the relative difference in soil water
holding capacity. However, more important than the direct
effect of water availability on microbial activity would be
the change in the overall size of the C and N pools due to
increased NPP inputs (Amundson et al. 1989; Austin and
Sala 2002). Thus, along a gradient of water availability,
the realized changes in N mineralization under very arid
conditions would be small due to small soil C and N pools,
in spite of the importance of soil textural differences
(Fig. 3B). The effects of soil texture would be most
pronounced, however, in semiarid to subhumid conditions,
where soil pools of C and N are larger and the differences
between N turnover are greater between coarse- and fine-
textured soils (Groffman and Tiedje 1988). Finally, in
subhumid conditions where flooding frequency may result
in periodic anoxic soil conditions, the coarse-textured soils
would show increased N mineralization when compared to
fine-textured soils. By inverting the inverse texture
hypothesis, it appears that soil texture, water pulses, and
labile C and N pools interact in different ways to affect
belowground processes than aboveground primary pro-
duction.

Water pulse effects on nitrogen inputs and loss

A unique aspect of many arid and semiarid ecosystems is
the presence of biological soil crusts, a complex soil
surface community dominated by cyanobacteria, micro-
fungi, mosses, and lichens. They cover the top 1–2 mm of
the soil surface between the vascular plant cover, and
become metabolically active immediately upon wetting.
The presence of cyanobacteria and lichens in these soil
crust communities results in the fixation of nitrogen, and
may represent the principal input of new N in some desert
ecosystems due to low rates of atmospheric deposition and
heterotrophic fixation (Evans and Ehleringer 1993; Evans
and Belnap 1999). Most desert precipitation events are
pulses of less than 3 mm (Loik et al. 2004), an amount too
small to elicit a response from most vascular plants, but
large enough for a response from these crust communities.
For larger rainfall events, crusts may reduce the rate of soil
drying, giving vascular plants more time to respond to
increased water availability (George et al. 2003). Each
species within the crust community has a different
physiological response to wetting, and their relative
abundance and the nature of the water pulses determine
the influence of crust communities on carbon and nitrogen
dynamics in desert soils (Jeffries et al. 1993; Castenholz
and García-Pichel 2000; Lange 2001). Much of the carbon
fixed by these communities is highly labile and is leaked
into the surrounding soil. At the same time, N inputs
through fixation are occurring; annual estimates range
widely (reviewed in Belnap 2001), but in general are
linked to the amount of time the soil crusts are wet and
able to maintain activity. For example, recent estimates
from the Colorado Plateau show inputs ranging from 1–

10 kg/ha/year, with inputs from lichens greater than
cyanobacterial species (Belnap 2002). The effects of water
pulses on crust carbon and nitrogen fixation are mediated
by temperature, primarily because cool desert soils are wet
longer than hot desert soils and temperatures are more
often optimal, resulting in higher N inputs in cool deserts.
A large fraction (up to 70%) of the nitrogen fixed by the
crust communities is also released into the surrounding
soils, particularly after a long dry period, which then
becomes available to plants and microbial soil commu-
nities (reviewed in Belnap 2001). This demonstrates the
tight linkage between N and C inputs from soil crust
communities and the nature and magnitude of water
pulses.

Losses of N in water-limited ecosystems are not well
understood, but consist of gaseous losses through N
transformations as well as runoff and deep percolation.
Wetting of dry soil has strong effects on emissions of NO
(Davidson 1992), with the highest NO flux rates in field
studies occurring during the 24 h immediately following
wetting during the summer, when temperatures are
relatively high (Davidson et al. 1993; Smart et al. 1999).
Wetting of dry, warm soils in a sagebrush steppe of Utah
increased NO emissions by as much as 400-fold (Smart et
al. 1999). In fact, the NO emissions following moisture
pulses may represent a substantial proportion of the total
annual NO flux (Yienger and Levy 1995). NO fluxes have
also been shown to increase along a gradient of increasing
aridity (Stark et al. 2002). While ambient NO flux rates are
slow and difficult to predict, the rapid fluxes following soil
wetting showed a strong negative correlation with C-
availability and microbial demand for N. Additionally,
NH4

+concentrations may limit flux of NO from desert
soils during wetting events (Hartley and Schlesinger
2000). Soils low in organic C appeared to have lower
rates of NO consumption, leading to greater rates of NO
emission from soils of more arid ecosystems (Stark et al.
2002).

Nitrification and denitrification are considered to be the
most important sources of N2O from soils (Paul and Clark
1996). Mummey et al. (1994) examined the sources and
regulation of N2O in a shrub steppe in North America and
found that along a gradient of soil moisture, N2O fluxes
were maximum with intermediate soil moisture (50% of
water holding capacity) and that the source was primarily
due to nitrification. In addition, as a result of experimental
wet-dry cycles, Mummey et al. (1994) found that
relatively large pulses of N2O and N mineralization
occurred in the soil during the subsequent 60 h after
wetting. N2O flux in this shrub-steppe ecosystem is
regulated by interactions between soil water content and
the balance between N mineralization and N-immobiliza-
tion.

Because denitrification can proceed at high rates during
brief windows of high water and nutrient availability,
pulse dynamics play an important role in this process in
arid and semiarid ecosystems. While it was believed that
desert ecosystems are unsuitable for the conditions
necessary for denitrification, given infrequent periods of
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adequate water availability, denitrification can occur at
rates comparable to temperate ecosystems (Virginia et al.
1982; Peterjohn and Schlesinger 1991; Groffman et al.
1993; Zaady et al. 1996a). The denitrifying enzyme
content in soil represents a persistent pool capable of
tolerating extended periods of desiccation; such tolerance
allows denitrifiers to respond rapidly to favorable condi-
tions (Peterjohn and Schlesinger 1991). Thus, pulses of
water availability may create conditions for denitrifying
activity where adequate carbon substrate and soil nitrate
accumulate during inter-pulse periods. Wetting-drying
cycles appear to accentuate denitrification, which strongly
correlate with pulses of C and N mineralization in the wet-
up period of wet-dry cycles (Groffman and Tiedje 1988).
This appears to be a previously underestimated parameter
for N loss (Frank and Groffman 1998), and water pulses
appear to be critical for the occurrence of denitrification in
water-limited ecosystems.

Water versus nitrogen limitation in arid and semiarid
ecosystems—is there a pulse connection?

There is evidence to suggest that at the regional scale,
nitrogen availability in addition to water availability may
contribute to limitation of net primary production in arid
and semiarid ecosystems (Fisher et al. 1988; Gutiérrez et
al. 1992; Burke et al. 1997; Belnap 2001; Austin and Sala
2002). In grassland ecosystems, modeling dynamics of C
and N pools have demonstrated a correlation between
water and nitrogen limitation (Parton et al. 1987, 1988;
Schimel et al. 1996, 1997). Moreover, these results
demonstrate that although biophysical processes have
“memory” effects of at most 1 or 2 years through soil
moisture storage, the coupled dynamics of water, carbon,
and nitrogen in the soils can induce lag effects over
decades through the decomposition of soil organic matter.
In the short-term, the activity of soil microbes may be less
sensitive to low soil water potential than is water uptake
by plants (Singh et al. 1989; Austin 2002), and many small
rain events may be of insufficient magnitude to elicit a
plant response but can cause a rapid increase in activity of
soil organisms (Freckman et al. 1987; Schwinning and
Sala 2004). Thus, soil microbes may continue to be active
in moments when plants are not, reducing competition for
mineral nitrogen and increasing the immobilization in
microbial biomass (Singh et al. 1989; Bolton et al. 1993).

One consequence of the frequently observed flush of N
mineralization in surface soil layers after wetting events is
the accumulation of inorganic N during subsequent dry
periods (Fig. 1). This relationship may result in periods of
maximum water and soil nutrient concentrations occurring
at different moments during the year, with periods of high
inorganic nutrient concentrations, while plants are either
senescent or unable to respond to nutrient pulses (Jackson
et al. 1988). This asynchrony may be enhanced in areas
where the growing season does not occur during the
season of maximum rainfall (e.g., cold deserts, Mediterra-
nean zones), or where periods of maximal N input do not

coincide with growing season, such that the temporal
difference between nutrient mineralization (supply) and
plant demand is amplified. These temporal differences
increase the possibility of nutrient loss through runoff or
deep percolation.

The increased potential for loss under these conditions
of incongruous nutrient supply and demand in the short-
term could lead to a N cycle in the long-term in which
losses relative to pool sizes are greater, driving toward
systematically low N availability (Austin and Vitousek
1998; Vitousek et al. 1998; Austin and Sala 1999). The
accumulation of mineral N in the soil increases potential
for leaching losses, which has been shown to accumulate
in the deep soil layers below the rooting zone in desert
ecosystems (Walvoord et al. 2003), or loss through
ammonia volatilization and denitrification. Additionally,
brief periods of unusually wet weather could reduce N
availability by promoting denitrification. While these
losses may be relatively small in terms of annual turnover,
the cumulative effect may have large impacts on C and N
pools (Peterjohn and Schlesinger 1990; Schlesinger et al.
1990). In spite of low N demand by vegetation, the
asynchrony results in high loss potential, particularly for
inorganic N, resulting in low N retention potential and a
higher proportional loss of mineral N relative to more
humid ecosystems (Austin and Vitousek 1998; Vitousek et
al. 1998; Handley et al. 1999; Amundson et al. 2003).
Thus, water pulses may play a critical role for the
maintenance of low N supply in arid and semiarid
ecosystems.

Human impact and global change in pulsed
environments

Increased drought periods, shifts in the wet-dry cycles of
soils, or increases in extreme events will alter biogeo-
chemical cycles, particularly nitrogen cycling, in natural
ecosystems (Ryan et al. 1998). Altered frequency or size
of pulsed water events may also affect the potential for
invasions, as species which are better adapted to an altered
climate may have an advantage over native vegetation
(Mack et al. 2001). In particular, changes in vegetation
structure, particularly changes in the shrub-grass ratio,
could result in increased spatial heterogeneity of resources
(Schlesinger et al. 1996; Kieft et al. 1998) or, alternatively,
increase vegetative cover and fire frequency (D’Antonio
and Vitousek 1992; Evans et al. 2001), which may respond
to pulsed water events in novel ways from undisturbed
ecosystems.

Increased gaseous emissions of NO, N2O and NH3 from
deserts due to changes in precipitation regime or increased
desertification may contribute to the depletion of strato-
spheric ozone, the global greenhouse effect and the
regulation of rainfall acidity. Nitrous oxide, in particular,
is cause for concern, as it is a stable compound in the
troposphere with a long residence time and absorption
properties that make it an extremely effective greenhouse
gas with a radiative forcing factor of nearly 300 times that
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of CO2 (IPCC 2000). The concentration of N2O in the
atmosphere has risen significantly since the beginning of
the century and is currently increasing by 0.3% year–1

(Matson and Vitousek 1990; IPCC 2000). Arid lands cover
approximately 40% of the Earth’s surface, and while the
estimates for gaseous N emissions from desert ecosystems
are relatively low when compared to tropical ecosystems
(Davidson and Kingerlee 1997; Hartley and Schlesinger
2000), the large expanse of aridlands results in the
potential for global impacts due to increased N gaseous
losses from these ecosystems (Schlesinger et al. 1990).

The interaction of multiple global change drivers,
including changes in precipitation regime, elevated CO2,
changes in temperature, and patterns of N deposition will
interact in ways that may be difficult to predict based on
the response of a single driver alone (Shaw et al. 2002),
but the nature of pulsed water events needs to be
incorporated into our understanding of ecosystem func-
tioning in arid and semiarid ecosystems in order to better
forecast human impact in the next century. It appears that
pulsed water events play a key role in a number of
belowground processes in arid and semiarid ecosystems,
and that changes in the nature of pulsed events due to
human impact may be more important than larger-scale
changes in total rainfall or temperature in affecting
biogeochemical cycling in water-limited ecosystems.

Approaches to understanding pulse dynamics and
biogeochemistry

Rainfall in arid and semiarid ecosystems is highly variable
in space and time, and while the characterization of pulses
have been described, the consequences on element cycling
and plant responses are more complicated to determine. A
multitude of approaches is necessary to disentangle the
various effects that pulses of water have on biogeochem-
ical cycling, and to identify mechanistic explanations for
the controls of pulsed water availability on ecosystem
processes.

One of the approaches is the manipulation of the pulse
itself, modifying the amount and timing of water inputs
and monitoring its effects on the status and processes of
the principal ecosystem processes. Possible manipulations
include rainfall exclusion, rainfall supplementation by
irrigation systems and/or a combination of both, and can
be made in mesocosm, greenhouse or field conditions. In
field experiments, water exclusion usually involves the use
of mobile (functional only during rainy periods) (Stansell
and Sparrow 1963) or fixed (Yahdjian and Sala 2002)
rainout shelters to reduce or eliminate natural precipitation
events. In addition, artificial rainfall systems can be
designed in a variety of ways to meet experimental goals,
including the manipulation of size of water pulses,
frequency between events, and total rainfall. Combined
fixed-location rainout shelters with irrigation systems to
redistribute water fallen on shelters permits the creation of
multiple precipitation treatments, with almost no changes

in water quality in the water supplemented plots (Fay et al.
2000; Knapp et al. 2002).

Stable isotope studies using pool dilution and chaser
studies show great promise in elucidating the relationships
between water pulses and biogeochemical cycles (Stark
2000). Studies using labeled nitrogen and water sources
(with 15N or 2H) can be applied in conjunction with water
manipulations to examine parallel effects on carbon and
nutrient cycling (Gebauer and Ehleringer 2000). Using
labeled plant material with 14C or 15N for tracing the
movement of carbon and nitrogen during wet-dry cycles
(e.g. Bottner 1985; Van Veen et al. 1985; Smith et al.
1989; Bottner et al. 1998) has been very useful in
advancing our understanding of the nature of carbon-
nutrient interactions. Recently, changes in natural abun-
dance of 13C and 15N are being used to better understand
the response of water-limited ecosystems to global change,
such as elevated CO2 (Billings et al. 2002; Van Groenigen
et al. 2002).

Finally, heuristic and mathematical models to track the
‘untrackable’ variables that occur at very rapid time scales,
or are very difficult to measure in the field (i.e. leaching
losses) or laboratory, allow for predictions and identifica-
tion of key parameters for future research. These models
can describe, at the daily and sometimes even at the hourly
time scale, the coupling of soil carbon and nitrogen
dynamics with soil moisture and temperature that act as
their main forcing variables. Recently, Porporato et al.
(2003) and D’Odorico et al. (2003) developed a stochastic
model to investigate the hydrological mechanisms con-
trolling the soil nitrogen cycle at the daily time scale.
These results showed how fluctuations of random precip-
itation affect carbon and nitrogen dynamics at different
time scales, from the low-frequency dynamics of changes
in soil organic matter, to the high-frequency variability of
leaching and plant uptake. Mathematical models and
numerical simulations provide a valuable tool of investi-
gation which is complementary to field and laboratory
experiments for disentangling these multiple effects of
pulsed water on ecosystem processes.
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