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Abstract
Increasingly severe forest fires in the west have triggered a high demand for accurate and timely information on forest fuel attributes. There is

great interest in the potential for using recent advances in high spectral resolution remotely sensed imagery to estimate fuel characteristics. We

combined field forest inventory and field spectroscopy in the Colorado Front Range with airborne imaging spectrometer measurements of the

region to test their capacity to estimate fire related forest attributes including canopy cover, forest type, and burn severity in ponderosa pine (Pinus

ponderosa) and Douglas-fir (Pseudotsuga menziesii var. glauca) dominated forests. Spectral angle mapper and mixture-tuned matched filtering

techniques were tested for mapping fuel attributes. Estimates of canopy cover using spectral angle mapper techniques found 61% agreement with

observed values, while mixture-tuned matched filtering estimates of forest canopy cover matched 78% with field observations. The distinction of

ponderosa pine versus Douglas-fir is crucial for predicting fire spread in the Rocky Mountains; we found that spectral discrimination of these

species was also promising, with an accuracy of 53–57%. The average canopy cover of mixed conifer forest in the area is 38.6%, 24.7% contributed

by ponderosa pine and 13.9% by Douglas-fir. The values of canopy cover ranged from 53% to 56% in US Forest Service planned fuel treatment

areas, among the highest in the region. Recent forest fires have created approximately 684 km2 of burned area, with very low canopy cover (13–

22%).

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Forest fire is a major ecological disturbance mechanism that

modifies forest landscapes (Dwire and Kauffman, 2003) and

endangers human life and property (Veblen et al., 2000) in large

areas of wildland/urban interface. In the Western US, large-scale

forest fires have become increasingly frequent and intense in

recent years (Brown et al., 2004). In some areas, crown fires that

are beyond the historical range of variability have consumed the

entire native seed source and the consequences for vegetation

recovery are largely unknown (Kaufmann et al., 2004, Lewis

et al., 2005). These fires have significant impacts on growing
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human populations in the Western US, and particularly the

Colorado Front Range, where numerous large fires since 1996

have devastated homes and municipal water supplies (e.g.,

Graham, 2003). The probability of large fires in the region is

high, as seen in the Hayman Fire of 2002 (Graham, 2003), and the

risk of these fires to humans is increasing rapidly. Had the

Hayman fire occurred 20–30 miles farther north, its footprint

would have included 8–10,000 homes and could have cost

hundreds of lives. Drought (Fried et al., 2004) and increased

human pressure on wilderness (Veblen et al., 2000) have been

two major factors that triggered high fire damage in those forest

fires. However, dense forest that contains a large amount of fuel

as a result of long-term fire suppression (Keeley et al., 1999) is

likely a more important and manageable influence.

As a result, the reduction of fuels is becoming a major

concern for decision makers, and forest fuel management plans
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have been proposed (Fulé et al., 2004) to reduce forest fire risk

in highly susceptible areas (Kaufmann et al., 2004; Lewis et al.,

2005). Such plans have increased the need for information

about the spatial distribution of forest fuel condition and burned

areas in order to identify priority areas for fuel treatment (Ustin

et al., 2004). However, ideal levels of information are often

difficult to obtain from field reconnaissance, or are at too coarse

a resolution to be useful. Thus, high resolution remote sensing

technologies are increasingly demanded by forest managers for

their fuel treatment planning.

Remote sensing has been used in forest studies to assess

canopy properties and to map burn severity (Ustin and

Trabucco, 2000) in various forest ecosystems such as boreal

forest, alpine coniferous forest, and both tropical forest and

woodland. Traditional satellite and airborne remotely sensed

imagery has been demonstrated to be useful for the

description of spatial patterns of these forest fire attributes

(e.g., Mbow et al., 2004; Ustin and Trabucco, 2000). At global

and regional scales, fuel/fire studies using remote sensing

have been focused on deriving fuel moisture (Martin and

Aber, 1997), estimating total biomass/fuel, and fire distribu-

tion and frequency (de la Riva et al., 2004) using multispectral

satellite data with spatial resolutions ranging from 30 to 8 km

(Justice et al., 2002). In recent years, imaging spectroscopy,

also known as hyperspectral remote sensing, has emerged and

been demonstrated to be useful for spectrally and spatially

discriminating these fire-related vegetation attributes at a sub-

pixel level (Ustin et al., 2004; Green et al., 1998; Clark et al.,

2003); experiments with these techniques have been focused

on relating various vegetation indices to forest fuel properties

(Treitz and Howarth, 1999), separating photosynthetic and

non-photosynthetic materials (Asner et al., 1998), estimating

canopy biochemistry (Smith et al., 2003), and detecting stress

on tree crowns (Ustin and Trabucco, 2000). The high spectral

resolution (224 bands) of the Airborne Visible and Infrared

Imaging Spectrometer (AVIRIS) in the 400–2500 nm region

allows the development of metrics sensitive to many

biophysical properties of canopies. Leaf pigments absorb

photons at a variety of visible wavelengths (400–700 nm),

whereas water and other plant constituents such as cellulose,

lignin, and nitrogen, all of which are influenced by canopy

type (including species), density and structure absorb in

varying intensity in the short-wave infrared region (900–

2500 nm). Many approaches have been devised to assess

vegetation fractional cover or species composition using

hyperspectral image analysis, though most of them were

conducted over sparse vegetation in arid and semiarid regions

(Ustin et al., 2004). For example, Asner et al. (1998)

examined heterogeneity of savanna canopy structure with

imaging spectrometry, and Roberts et al. (2003) compared

airborne and spaceborne hyperspectral data in evaluating fuel

moisture and biomass, while a wide variety of studies have

also attempted to detect plant pigments, photosynthetic

materials with spectral analysis (Asner, 1998; Smith et al.,

2003).

AVIRIS has been the pioneer for hyperspectral data since

the early 1990s. Meanwhile, other hyperspectral sensors such
as the compact airborne spectrographic imager (CASI), short

wave infrared (SWIR), full spectrum imager (SFSI), and

Hyperion have enhanced hyperspectral data availability and

widened its applications. CASI and SFSI are airborne

hyperspectral sensors that observe visible to near-infrared

spectra and short-wave infrared (SWIR) region respectively.

Hyperion, onboard NASA’s Earth Observing-1 (EO-1)

satellite, is the only spaceborne hyperspectral sensor at

present, and is serving as a prototype for potential future

missions. The Hyperion sensor collects 242 spectral channels

ranging from 0.357 to 2.576 mm with a 10-nm bandwidth,

which is similar to AVIRIS, at a spatial resolution of 30 m

(http://edc.usgs.gov/products/satellite/eo1.html). Hyperion

has been tested in various applications as a valuable potential

spaceborne replacement for AVIRIS, although in many cases

it has relatively lower signal-to-noise ratio and thus far

yielded lower accuracy (Roberts et al., 2003; Smith et al.,

2003). The spectral analysis techniques for assessing forest

fuel attributes tested here, though applied to AVIRIS data,

could be applied with Hyperion or later versions of this

satellite borne technology.

Across much of the Front Range of the Rocky Mountains,

from Montana to New Mexico, one of the key features

determining fire behavior is the distribution and dominance of

ponderosa pine versus Douglas-fir (Kaufmann et al., 2000).

Surface fires, common before the era of fire suppression, kill

many seedlings and saplings, and help maintain low tree

density. Once fires are able to move into the crown, however,

stand-replacement generally occurs unless overstory density is

low. While ponderosa pine often matures with few lower

branches (‘‘ladder fuels’’), Douglas-fir maintains foliage and

branches near the ground (low crown base height), generating

sufficient ladder fuels to alter fire behavior dramatically. Thus

the presence and density of Douglas-fir is useful as a predictor

of fire behavior (Scott and Reinhardt, 2001). To date, no remote

sensing techniques have been developed to adequately

separate conifer species such as ponderosa pine and

Douglas-fir at a landscape scale. However, some attempts

have been made using sub-meter resolution airphotos and in

situ spectra of individual trees (Gong et al., 1997), and more

recently, using Light Detection and Ranging (LIDAR) data

(Andersen et al., 2005), IKONOS, and Quickbird satellite

images (Wang et al., 2004).

Our objectives in this study were: (1) to find the most

appropriate hyperspectral image processing techniques for

assessing forest attributes relevant to fire risk by comparing

spectral analysis techniques and (2) to test the techniques for

estimating key forest fire risk attributes, including: (a) total

canopy cover, (b) cover by ponderosa pine and Douglas-fir, and

(c) burn severity. Forest canopy cover is a key fuel property that

indicates tree crown coverage and is correlated with crown fire

risk. As described above, discriminating ponderosa pine from

Douglas-fir is of critical value to managers. Finally, burn area

and severity serve as indicators of past fire events and a major

source of forest landscape heterogeneity. They provide useful

insight for fuel treatment plans and ecological restoration

programs.

http://www.warnercnr.colostate.edu/frws/research/westfire/FinalReport.pdf


G.J. Jia et al. / Forest Ecology and Management 229 (2006) 27–38 29
2. Site description

We conducted our study in the Pike National Forest in

Colorado, USA, located southwest of the Denver metro area

(Fig. 1). This region is characterized by a semiarid–semihumid

montane climate, with annual precipitation of 545–551 mm and

annual mean air temperature of 5.6–8.3 8C (Birkeland et al.,

2003). Elevations in the areas vary from 1900 m in the east to

2800 m in the west. Vegetation types of concern in the region

include ponderosa pine and Douglas-fir forest, mixed conifer

(Pinus ponderosa, Pseudotsuga menziesii, Pinus contorta,

Picea pungens, Abies lasiocarpa, Populus tremuloides) forest,

and woodland dominated by pinyon pine (Pinus edulis) and

juniper (Juniperus scopulorum), with patches of shrub and

grassland. Watersheds within the Pike National Forest serve as

major recreational and water supply areas for Denver residents.

As an area of wildland/urban interface, the area contains about

4000 households, making wildfire a major threat to human life

and property.

The forests in the Pike National Forest have been severely

impacted by logging, grazing and fire suppression during the

past two centuries (Kaufmann et al., 2001). Historically, they

were dominated by fire-resistant ponderosa pine, with lesser

amounts of Douglas-fir and other fire-sensitive species that

are not as well adapted to surviving fire as are mature

ponderosa pine. Current forests are generally younger, far

denser, and have many more fire-sensitive trees than historical

forests (Kaufmann et al., 2001). Historical fires in the

ponderosa pine forests occurred with return intervals of 20–60

years, more frequently at lower elevations and less frequently
Fig. 1. Index map showing location of the study sites and spatial coverage of AVIRI

shaded polygons are the location and boundary of US Forest Service fuel treatmen

Colorado, with major metropolitan areas shown in black.
at higher sites (Kaufmann et al., 2004). During most of the

20th century, there were only a few moderate-sized

(<1000 ha) forest fires in the region, and fuels gradually

built up, including reforestation of many openings due mainly

to the century-long fire suppression policy (Brown et al.,

2004). During the last century, several large size and severe

fires in this national forest occurred from 1996 to 2002,

including the Buffalo Creek fire (1996), the Hi Meadow fire

(2000) and the Hayman and Schoonover fires (2002). In June

2002, the Hayman Fire, centered at Cheesman Lake, burned

55,751 ha of natural vegetation, destroyed more than 600

structures and cost nearly 40 million dollars in fire

suppression and property damage (Romme et al., 2003a).

With a mixed burn severity (Schoennagel et al., 2004) in some

areas and crown fire over more than 24,280 ha, the Hayman

fire killed most of the aboveground biomass around Chees-

man Lake, and left patches of unburned or lightly burned

conifer forest in the southeastern portion of the fire area. The

fire was severe enough that major erosive events occurred,

influencing municipal water supplies (Graham, 2003). With

all of the attention focused on this area, the US Forest Service

is under particular pressure to develop forest fuel treatment

projects to systematically reduce fuel loading using pre-

scribed burning and mechanical thinning.

Our study was designed to provide forest managers with

needed information on the condition of fuels for mitigation of

wildland fire. In particular, we focused on estimating forest

canopy cover, separating ponderosa pine and Douglas-fir, and

assessing burn severity of two recent fires, namely the Hayman

Fire and Hi Meadow Fire.
S data. The rectangle shows the spatial extent of AVIRIS data used in the study;

t areas and recent fires. The inset map shows the study location in the state of
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3. Data and methods

3.1. Field inventory of vegetation/fuel variables

We established 34 100-m forest transects and 128 indepen-

dent plot-less validation samples randomly selected in the study

areas to measure tree species, canopy cover, and burn severity.

Both transect starting points and the location of plot-less

samples were randomly selected with a geographic information

system. We used ENVI (Research System Inc., Boulder, USA)

random point module to generate 246 potential sample sites in

our study region, then ruled out the points located in non-

vegetation areas and in private lands as shown on Landsat

images and USFS quadrant maps. In the field, we located and

sampled those points that were located within 1.6 km of road

and within public lands. Fire events were also considered

during sample site selection. The transect data were used to

train the classification used in spectral analysis and mapping,

while the plot-less sample data were used for field validation of

AVIRIS derived maps.

Along each 100-m transect, we randomly selected five

points at approximately 20-m intervals, and used modified-

Whittaker methods for field sampling (Brown et al., 1982). At

each of the points, we laid out a 15-m transect at a randomly

selected angle from the original 100-m transect. Along each

15 m sub-transect we measured: (1) species, height, diameter at

base height (DBH), crown diameter, and height-to-branch of

the four nearest trees in each quadrant at the end of the transect;

(2) canopy cover with a hand-held spherical densitometer

(Model-A), four readings of canopy cover facing north, east,

south, and west (in order to reduce uncertainty during

measurement); (3) existence and severity of fire. We measured

trees along each transect in two ways: we counted all small trees

(less than 3 m tall) within a 3 m radius from the end point of the

15 m transect, and measured four large trees at the beginning

point. We used the 15 m transect line to divide the area around

the beginning point into four quadrants. We selected the closest

tree in each quadrant that was greater than 3 m tall and

measured DBH, tree height, height to the first live branch,

height of burned parts of the tree and burn severity, bark

thickness, and crown width. We also noted the shape, and

amount of ladder fuels surrounding the tree. The final step of

tree measurements was taking a tree ring sample, which was
Table 1

Burn severity classification based on both stand damage and ground char (after O

Class Severity Stand damage

0 Unburned Tree crown unscorched

1 Light Partial scorch on at least

but some unscorched

2 Moderate Partial scorch on all tree

but few completely scorc

3 Heavy Nearly all tree crown com

but few crowns consume

4 Extreme Nearly all tree crowns co

* Omi, P.N. and Martinson, E.J., 2002. Effect of fuels treatment on wildfire severi

URL: http://www.warnercnr.colostate.edu/frws/research/westfire/FinalReport.pdf.
taken from the largest tree of the dominant species in the area.

We used severity classes developed by Omi and Martinson for

examining both stand damage and ground char (Table 1).

During the transect sampling, we linked a Garmin V GPS unit

to a laptop computer with ENVI software to instantly track and

mark sample plots and transects on a geo-registered high-

resolution QuickBird image (2.8 m pixel size, DigitalGlobe

Inc., Longmont, Colorado) and AVIRIS images in term of

species composition, canopy cover and burn severity (Fig. 2).

Later, we used these GPS waypoints to train classification

algorithms based on AVIRIS data.

Plot-less sampling is a vegetation sampling method that does

not establish a sample plot and therefore without sample plot

boundaries. In this technique, communities are not sampled

with delimited plots, but with sampling points, one-dimen-

sional transect lines, or certain distances within the stand

(Knapp, 1984). Plot-less methods could be thought of as

quadrants shrunk to a line or a point of no dimension. With a

sufficient number of points, an exact measurement of percent

cover of certain species or functional group is possible (Knapp,

1984). At each plot-less sample site, we randomly laid out two

50-m transects at 908 angles to each other, and at each of the

three endpoints we recorded burn severity (if there was a recent

fire) and canopy cover with a hand-held spherical densitometer

(Model-A), using an approach similar to the one we used with

the 100 m transects. At these plot-less sample sites, we also

estimated percentage of each tree species and coverage of

herbaceous plants, litter, and shrubs.

3.2. Field spectra of tree species and fuel related materials

We collected field reflectance spectra of fuel-related

materials at the sample sites. We acquired field reflectance

spectra of dominant tree species, char wood, bare soil, and

various fuel materials from late September to mid-October with

a FieldSpec Pro spectrometer (Analytical Spectral Devices,

Boulder, CO) over the 400–2500 nm wavelength region at 1 nm

intervals. The measurements were made on cloud-free days

between 11:00 and 13:00 to closely match the solar geometry of

the field measurements with the AVIRIS overflight. The

spectrometer was positioned approximately 1 m from the

sample surface at a 08 view zenith angle. With the 188 fore-

optics on the spectrometer, the diameter of the field of view at
mi and Martinson*, 2002)

Ground char

No evidence of surface fire

one tree, Some small twigs/leaves remain

crowns,

hed

All twigs, leaves, and standing grasses

consumed; mineral soil charred

pletely scorched,

d

Mineral soil altered in color or texture

nsumed

ty. Final Report submitted to the Joint Fire Science Program Governing Board.

http://www.warnercnr.colostate.edu/frws/research/westfire/FinalReport.pdf
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Fig. 2. AVIRIS derived classes of: (a) canopy cover and (b) burn severity as shown on fused 0.7-m QuickBird images over field validation sites. The second column is

zoomed in from the center of first column and corresponds to AVIRIS training pixels. Individual live tree crowns (red) and senescent tree crowns (blue–green) are

identified with false color composites. Single burned trees (blue–green) are also distinguished on the image. PP: ponderosa pine. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of the article.)
the sample was 28 cm. The sunlight and view angles were chosen

to minimize shadowing and to emphasize the fundamental

spectral properties of the plant and other materials. We acquired

9–15 spectra of each sample by moving the sensor over the

objects to get the average spectra for comparison with the spectra

of the AVIRIS pixels. We calibrated the spectrometer prior to

measurement of each material using standard protocols (Clark

et al., 2003). The spectra collected in the field campaign included

live canopy of dominant species of trees, shrubs and herbaceous

plants, dead plant materials, charred wood, bare soils and rocks.

We averaged together and re-sampled the field reflectance

spectra of each endmember (or spectrally pure material) (Adams

et al., 1993) to the AVIRIS sampling and bandpass for further

processing (Fig. 3).

3.3. AVIRIS data acquisition and processing

High-altitude AVIRIS radiance data (Green et al., 1998)

were acquired with an ER-2 plane by NASA’s Jet Propulsion

Laboratory (JPL) on 15 October, 2002 over the central part of

the Pike National Forest. The AVIRIS data for our fuel

attributes assessment were acquired through NASA’s carbon

cycle sciences program upon a data acquisition request. The

AVIRIS mission collected data from the wildland/urban

interface in the east to the ponderosa pine/Douglas-fir forest

in the west, crossing Jefferson County, Park County, and
Teller County, Colorado. The flight approximately followed

the Front Range from north to south (Fig. 1). The AVIRIS

data have approximately 17.5 m spatial resolution, with 224

spectral bands of 10 nm spectral resolution. The swath and

length of AVIRIS flight lines are 10.5 and 53 km,

respectively in this study. There were patches of snow at

high elevation, and the visibility was not limited by clouds or

haze.

The AVIRIS data were collected approximately 4 months

after the Hayman Fire; this major fire event was one of the

dominant features in the images. Due to the frequent recent

wildfire in the region, other burned areas and fire-disturbed

landscape at different ages were also found across the scenes.

During this season, most of the herbaceous species and

deciduous trees and shrubs were senescent, making their

reflectance spectra maximum contrast with coniferous tree

crowns in visible and near infrared wavelengths.

The original JPL AVIRIS datasets were georectified based

on aerial photos and USGS 10 m digital elevation model

(DEM), and were re-sampled at the same pixel resolution

(15 m). The re-sampled AVIRIS datasets were then atmo-

spherically corrected and converted to reflectance using the

High-Accuracy ATmospheric Correction for Hyperspectral

Data (HATCH) algorithm (Goetz et al., 2003). We merged the

five flight lines together to create a mosaic image over our study

area.
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Fig. 3. Spectral reflectance of dominant endmembers and spectral mixtures in the study area: (a) canopies of ponderosa pine and Douglas-fir; (b) common

endmembers in a ponderosa pine forest patch showing live tree branch, understory plants, and bare soil; (c) common endmembers in burned forests.
3.4. Spectral analysis and mapping of fuel variables

In most cases, AVIRIS pixels in coniferous forests are a

mixture of four ecological entities that we identified as spectral

‘‘endmembers’’ (Adams et al., 1993): live tree crown,

understory live plants, dead plant materials (includes litter),

and bare soil. In the burned forest, AVIRIS pixels are a mixture

of live tree crown, charred tree crown, dead plant materials, and

bare soil. Bare soil plays a role as a background spectral

signature and often dominates the mixed spectra, while shadow

is not as obvious as in conifer pixels. We cannot expect to find

pure pixels of conifer crown patches on high-altitude AVIRIS

data with 17 m spatial resolution in this region (larger than any

single conifer crown, and gaps between crowns). However, the

subpixel discrimination capacity of AVIRIS data provides a

promising approach for mapping forest type, canopy cover, and

burn severity.

We tested the two readily available spectral analysis and

mapping techniques, spectral angle mapper (SAM) (RSI, 2004)

and mixture-tuned matched filtering (MTMF) (Boardman et al.,

1995; RSI, 2004), using the AVIRIS data, with the goal of

estimating forest canopy cover, discriminating among the

dominant canopy types (Douglas-fir and ponderosa pine), and

to assess burn severity, in order to generate the most useful

maps for fuel treatment analysis.

We first tested the SAM approach. This is a standard

hyperspectral data analysis technique that has been tested for

a variety of AVIRIS data (Kruse et al., 1993), and is

implemented within the Environment for Visualizing Images

(ENVI) software system (RSI, 2004). We used the following
steps: (1) a linear transformation (minimum noise fraction,

MNF) related to principal components analysis was applied

to the original 224 bands to summarize the spectral

information in 36 new bands that were orthogonal to one

another but maintained 98.8% variability in the dataset,

therefore reducing the number of spectral dimensions and

any co-linearity in subsequent processing, (2) a pixel purity

index (PPI) (RSI, 2004) process was run on the new bands to

locate the most extreme (or ‘‘pure’’) pixels that were

potentially representative of pure objects such as ponderosa

pine tree crown or rock found in image areas. PPI achieved

this using convex geometry by determining the edges of the

MNF data cloud via multiple rotations of the data: 10,000

rotations were performed here to find the edges. PPI initially

screened all the pixels in the image in terms of their relative

purity. Based on convex geometry concepts, the PPI method

allocated to each pixel in the image a score based on the

number of times it was found to occupy a near-vertex

position in the repeated projections of the n-dimensional data

onto a randomly-oriented vector passing through the mean of

a data cloud. The resulting score helped identify image

endmembers because those pixels that hold relatively pure

spectra will have a high score, (3) the ‘‘pure’’ pixels were

used as input to an interactive visualization procedure known

as n-dimensional visualization (RSI, 2004) and plotted on

original AVIRIS data and GPS/GIS data layers to cross-

reference with ground data. Then the resulting clusters of

pixels were examined with their key spectral features and

compared against field spectral measurements. Through the

n-dimension visualization, it became possible to group the
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pixels in classes based on their clustering in the spectral

space. A threshold of 50 pixels or more per group was used

to remove dispersed pixels from the selection and to ensure

that each cluster of pixels has physical correspondence on the

scene, (4) spectral angle mapper classification was performed

using the ‘‘pure’’ pixels as input classes. This is an

automated method for comparing image spectra to reference

spectra of input classes. The algorithm determines the

similarity between two spectra by calculating the ‘‘spectral

angle’’ between them, treating the spectra as vectors in a

space with dimensionality equal to the number of bands and

calculates the angle between them. SAM was run with a

maximum angle threshold of 0.10 rad to separate the classes.

With this procedure we created maps of nine canopy cover

levels in 10% intervals each for ponderosa pine and Douglas-

fir dominated forests. Higher canopy cover is characteristic

of higher fraction of tree crowns in pixels.

The second spectral analysis technique we tested is the

mixture-tuned matched filtering (MTMF). The MTMF is a

technique that works by partially unmixing pixel spectra

according to user-defined pure spectra. It maximizes the

response of a known material (e.g., ponderosa pine canopy)

and suppresses the response of the composite unknown

background (e.g., shadow, understory vegetation, etc.). There-

fore, the technique estimates the abundances of materials at sub-

pixel scale within an AVIRIS pixel, and the result is an image

showing the abundance (0–100%) of the materials in each pixel

and indicating the degree to which the pure material was matched

to the pixel spectra and the approximate sub-pixel response of the

material (Kruse et al., 1993). With the data products generated

from step (3) of the first method as an input layer, we analyzed

reference classes of ponderosa pine canopy, Douglas-fir canopy,

and charred wood using the MTMF procedure.

We used two approaches to find reference spectra of these

conifer species. First, ponderosa pine and Douglas-fir spectra

were extracted on AVIRIS images from regions of interest

(ROI) corresponding to known pure stands where the transect

data indicated these were monospecific patches of either

species. Second, the image spectra of those ROIs were

extracted and matched with field spectra of the two species.

Only matched ROIs were used for further analysis. A series of

images was produced for each class where bright pixels indicate

high abundance of ponderosa pine or Douglas-fir, and therefore

a high MF (matched filtering) score.

We calculated the Pearson correlation coefficient (r2) to

determine the level of agreement between the hyperspectral

estimates of total forest canopy cover and field measurements.

We also compared AVIRIS estimates of individual tree species

cover (ponderosa pine versus Douglas-fir) to measured values.

These validation field data came from the non-plot sampling

within the image coverage, and the AVIRIS estimates of canopy

cover and conifer species were derived from 9-pixel blocks

centered at the corresponding field sites.

We spatially summarized the canopy cover over the planned

USFS fuel treatment areas and recent fires located within the

image and compared canopy cover by species among the areas

using ArcGIS spatial analysis module (ESRI, Redland, CA,
USA) by overlaying AVIRIS derived maps with the polygons of

treatment areas. We also spatially summarized the burn severity

in areas of Hayman Fire and Hi Meadow Fire.

4. Results and discussion

4.1. Field and imaging spectroscopy

Theoretically, no pair of materials has the same spectral

reflectance in the full range of 400–2500 nm. This is the basis

for spectral unmixing techniques (Adams et al., 1993). In field

spectra, conifer tree crowns had great contrast with deciduous

shrubs (e.g., Cercocarpus montanus or mountain mahogany, the

most dominant) and grasses (Bromus tectorum or cheatgrass),

commonly found in canopy gaps (Fig. 3). At wavelengths of

800–850 nm, the peak reflectance of ponderosa pine was 0.35,

much higher than mountain mahogany (0.23) and cheatgrass

(0.19). High contrast was also located around wavelengths 570

and 1620 nm. The two dominant conifer tree species,

ponderosa pine and Douglas-fir have very similar spectral

reflectance at a leaf-scale throughout the range. However, with

various field spectral samples taken from different locations in

the Pike National Forest, we were able to distinguish contrasts

of reflectance between the species around three wavelengths,

1240, 1620, and 2200 nm, though the difference was only about

11% on average (Fig. 3a). Visible and near infrared reflectance

was lower for ponderosa pine than Douglas-fir. Charred wood is

dead woody material; therefore, there was no obvious infrared

plateau as found in live plants. In our samples, reflectance of

charred wood in infrared bands was about 68% of ponderosa

pine. Meanwhile, reflectance of charred wood had a high

contrast with standing dead wood and bare soil in the short-

wave infrared (SWIR) bands.

Pixels in remotely sensed images are made up of mixed

reflectance signals of several pure materials, though strong

dominance of one single material is not uncommon (Clark

et al., 2003). The dominance of the ponderosa pine signal

gradually decreases as canopy becomes more open and the

reflectance of understory materials is added into the spectra. In

the SAM procedure, this series of pixels was distinguished as a

different spectral mixture, whereas in the MTMF procedure this

yields a decreasing abundance of the ponderosa pine fraction.

Similarly, charred wood is an important part of pixels in burned

areas. Forests in different burn severity levels were distin-

guished with the SAM method as different spectral mixtures

with various fractions of charred wood, (e.g., high burn severity

is indicated as a spectral mixture with a high fraction of charred

wood) but were discriminated by the MTMF method as a

different abundance of the charred wood fraction.

As mentioned early, we measured field spectra of tree

canopies over the crowns of short trees with a ladder, and

harvested tree branches of tall trees and measured them on the

ground. Considering the small swath the spectrometer can see,

spectra measured with these approaches should be very close to

the ones from the top of canopy. However, due to the difference

in altitude of sensors and size of measuring units, AVIRIS

derived spectra could only match well with field spectra if: (1)
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the atmospheric effect of AVIRIS data was corrected using

appropriate calibration; (2) an AVIRIS pixel contains a

continuous canopy of single species. Here we used the HATCH

algorithm to eliminate atmospheric effect and PPI to locate

‘‘pure’’ pixels to match field spectra of referenced species, i.e.,

ponderosa pine and Douglas-fir in this study. These efforts are

critical to make the spectra at different scales more comparable.

4.2. Field validation and comparison between two

techniques

To assess the accuracy of AVIRIS derived fraction maps and

to evaluate the robustness of SAM/MTMF in the context of

conifer forest, field samples were utilized to validate the final

results. Despite the growing number of studies on spectral

mixture analysis, assessing the accuracy of derived endmember

fractions in forest regions through direct quantitative methods

is one of the topics that has been remarkably neglected in the

present. The difficulty arises from the fact that natural surfaces

composed of a single uniform material do not exist in natural

forests. This makes it very difficult, if not impossible, to find

sufficient ground truth data that can directly be compared

against the continuous varying surface of generated end-

member fractions over large areas. The alternative solution is to

compare the agreement of derived endmember fractions with

estimates of fractions derived independently by another

method, e.g., field measurements. Here we examined the

agreement of AVIRIS derived fuel attributes with estimates

from field sampling.

We compared AVIRIS-derived canopy cover, dominant

species, and burn severity with the variables measured in the

field. The modeled variables from the two spectral analysis

techniques were compared against correspondent measured

values separately (Fig. 4). Total canopy cover estimated with

the SAM technique had an agreement of r2 = 0.61 with

measured values, much lower than the results from the MTMF

method (r2 = 0.78). It demonstrated that the capacity of sub-

pixel unmixing by MTMF is more promising for estimating the

abundance of dominant tree canopy than SAM techniques,

which has some limitations in discriminating tree canopies
Fig. 4. Comparison of measured and modeled forest canopy cover from test sites. T
from highly heterogeneous background. By examining the

grey-scale images derived from AVIRIS and validation plots,

we found that areas detected by SAM as dense canopy also have

high canopy cover in the MTMF-derived image (Fig. 5), and

that both techniques underestimated canopy cover to some

extent. However, SAM yielded a greater underestimate at high

values (i.e., over 60%) than MTMF. This may have been caused

by intrinsic insensitivity of SAM algorithm when handling

dense canopy; nevertheless, it indicated that the algorithm is

less accurate than MTMF with canopy cover.

The abundance of the two conifer species distinguished with

the SAM technique had agreement of r2 = 0.57 with field data,

slightly higher than that from the MTMF method (r2 = 0.53,

data not shown). In general there was relatively high agreement

between observed and predicted canopy cover when the MTMF

method was used. The SAM method, however, is more

promising for separating the two tree species. Both SAM and

MTMF yielded reasonable separation of ponderosa pine and

Douglas-fir, with SAM slightly advanced, however, the

agreements for species discrimination were not as high as

those for canopy cover. The lack of enough sites with large

values for these two variables limits the generality of the

relationships we found. We suggest that these results indicate

evidence of AVIRIS’s capacity to provide estimates of canopy

cover and tree species, but additional training for more

generalized field spectra for both species, especially spectral

measurement over tree crowns, are needed to more accurately

separate ponderosa pine from Douglas-fir.

Burn severity derived from the SAM technique had

agreement of 87% with measured classes, whereas the value

dropped to 64% for MTMF method (Table 2). However, if we

exclude the class of ‘‘unburned’’, the agreements for the SAM

technique and the MTMF technique were 71% and 55%,

respectively.

In general there was relatively high agreement between

observed and predicted canopy cover when the MTMF method

was used. The SAM method, however, yielded higher

agreement for detecting burn severity. Meanwhile, the

differences attributed to SAM and MTMF may have been

partly caused by endmember selection techniques. PPI selects
he dotted lines represent the 1:1 lines where observed equal predicted values.
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Fig. 5. AVIRIS derived map (grey scale) of: (a) ponderosa pine canopy cover and (b) Douglas-fir canopy cover classes in central Pike National Forest. The map was

generated with mixture-tuned matched filtering spectral analysis and classification, and was validated with ground forest inventory. Darker colors represent higher

cover values, and values range from 0 to 1. The black polygons represent US Forest Service treatment areas, and perimeters of recent fires are shown in Fig. 1.
the ‘‘most extreme’’ endmembers, while the endmember

selection technique used for MTMF would tend to produce

more ‘‘representative’’ endmembers. Both field spectra end-

member and image spectra endmember have advantages and

disadvantages. Field measured spectra tend to ignore the

scattering within tree canopies and underestimate the end-

member, while image spectra are often mixed with background

signatures such as dead branches in tree crowns, and lead to

overestimate the endmember. In this case, scattering effects and

background spectra are likely the most important sources of

error in the SAM and MTMF processes, and not the algorithms

themselves.

4.3. Map of fuel attributes and burn severity

We generated a series of maps of canopy cover by dominant

tree species from the MTMF spectral analysis procedures

(Fig. 5). We then categorized the continuous canopy cover

layers into an eight-class forest map based on a US Forest

Service forest stand classification system (Kaufmann, Unpub-

lished). The classification separated openings (0–5% canopy
Table 2

Confusion matrix for agreement between AVIRIS estimates of burn severity and m

Severity classes Low Moderate H

SAM MTMF SAM MTMF S

Low 79.7 56.2

Moderate 73.1 61.7

High 8

Unburned

Total

Low refers to light, and high refers to heavy and extreme in field burn severity m
cover), scattered woodland (5–10%), woodland (10–30%), and

forest (>30%) by dominant species. In these AVIRIS derived

fuel attribute maps, 13.2% of the study area had over 60%

canopy cover, generally at high risk for crown fire. The average

canopy cover over the mixed conifer forest landscape was

approximately 38.6%. Of this, ponderosa pine contributed

24.7% and Douglas-fir contributed 13.9%. Canopy cover of

both tree species varied substantially across the study region,

showing important trends with respect to fire hazard and with

respect to fire response. For example, the average canopy cover

in the Buffalo Creek fire area was only 13.1% after a 6-year

recovery (largely the result of small patches of surviving trees),

40.3% lower than the adjacent unburned Dell Gulch watershed.

We were also able to use our maps to assess the appropriateness

and effectiveness of fuel treatments planned by the US Forest

Service and others in a number of areas, two of which are shown

in Fig. 1 (North plan, NE plan). Comparing the two planned

areas, the northeast area may merit slightly higher priority

(other things being equal), according to our remotely sensed

data and analysis (Fig. 6). First, it has a slightly higher total

canopy cover and considerably higher Douglas-fir fraction than
easured burn severity classes

igh Unburned Total

AM MTMF SAM MTMF SAM MTMF

7.4 83.5

95.7 77.8

86.8 64.4

easurements.
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Fig. 6. Distribution of canopy cover of ponderosa pine and Douglas-fir in US

Forest Service fuel treatment areas (planned and treated) and recent fires. The y-

axis represents proportion.
the north area, and therefore is likely to be more vulnerable to

wildfire. Second, the northeast area and surrounding landscape

has a high Douglas-fir component compared to the north area,

which is located between large openings created by Hayman
Fig. 7. AVIRIS derived map of burn severity in: (a) 2000 Hi Meadow and (b) 20

classification, and was validated with ground forest inventory.

Table 3

Area in each AVIRIS-derived burn severity class for recent fires in south Platte, and co

Fire Area (km) AVIRIS burn severity (%)

Unburned Low Moderate

Hayman 556.0 12.1 27.8 22.5

Hi Meadow 48.2 10.2 13.9 34.8

Summary 604.2 11.2 20.9 28.7
fire and Buffalo Creek fire. Mechanical thinning in the

northeast area (NE treated in Figs. 1 and 6) has reduced canopy

cover by 25% (mostly small trees). This practice has eliminated

some ladder fuels and reduced the chance of crown fire spread.

Four levels of burn severity were distinguished and mapped

with the spectral reflectance derived from AVIRIS images. In

two recent fires, forests with high, moderate, and low burn

severity covered 39.4%, 28.7%, and 20.9% of the landscape,

with only 11.2% unburned area (Fig. 7 and Table 3). In the Hi

Meadow Fire, a larger percentage (75.9%) burned at moderate

and high severity than in the Hayman Fire (60.1%). However,

the Hayman fire was much larger and caused more severe

effects at a landscape scale (Romme et al., 2003a,b).

Both AVIRIS and burn area emergency rehabilitation

(BAER) maps suggest more residual live canopy cover in

severely burned areas than is actually present (Table 3). BAER

maps are created from satellite imagery immediately after fires.

We found in a recent field validation trip that many burned areas

have absolutely no surviving overstory in Hayman Fire area

even after about 3 years. Therefore, we must take into account

that when both the AVIRIS and BAER data were gathered, it
02 Hayman burn areas. The map was generated with spectral angle mapper

mparison with burn area emergency rehabilitation (BAER) burn severity classes

BAER burn severity (%)

High Unburned Low Moderate High

37.6 15.5 33.8 15.8 38.9

41.1 2.0 0 53.0 45.0

39.4 8.8 16.9 34.4 42.0
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was too soon after the fire to be sure trees were alive or dead

(and in fact many were dead).

5. Conclusions

This study considered the performance of spectral analysis

techniques for estimating fire related forest attributes. We

combined forest inventory and field spectroscopy in the Colorado

Front Range with airborne imaging spectrometer measurements

of the region to estimate canopy cover, tree species fraction, and

burn severity in ponderosa pine/Douglas-fir forest. Douglas-fir is

much more fire sensitive than ponderosa pine and other conifer

species in this type of forest and is also more susceptible to insect

herbivores and harmful pathogens that can spread to other trees in

the forest (Keane et al., 1990). The rise of Douglas-fir fractional

cover due to long-term fire suppression practice increases fire

potential and fuel load. Therefore, identifying Douglas-fir and

ponderosa pine and estimating their fractional canopy cover are

of increasingly importance in fire mitigation in the west.

Our results demonstrated that spectral mixture analysis

approaches, such as the ones employed in this study, offer the

capacity to assess important fuel attributes including canopy

cover, species composition, and burn severity over montane

conifer forests. The spectral angle mapper technique performed

well in estimates of burn severity, while the mixture-tuned

matched filtering method is more promising for estimates of

forest canopy cover. Further improvement of the techniques

will rely on a field spectra database that considers all possible

internal variance of endmembers. The results of spatial analysis

based on AVIRIS derived fuel attributes also show that average

canopy cover in ponderosa pine dominated forests is lower than

in Douglas-fir dominated forests, and that recent wildfires have

created approximately 684 km2 of openings in the region, yet

more than 10% of the area within fire perimeters is still covered

by continuous dense forests.

Practically, combining these fuel attributes derived from

AVIRIS can provide important insights for priority fuel

treatment areas. When the maps of these fuel attributes derived

from spectral analysis are integrated with fire behavior

modeling (Mbow et al., 2004), large-scale fire risk assessment

can be improved with respect to detailed fractional fuel

structure. The system in which we worked is one of the

dominant forest types in the Western US, present from New

Mexico to Montana. Further, the techniques tested in the study

are highly transferable to other coniferous forests, if localized

field spectra and parameters for spectral analysis are properly

provided. The limitations of AVIRIS are that it is only available

in small areas upon request and that data processing requires

special expertise and software. The spectral analysis techniques

for assessing forest fuel attributes tested here, though applied to

AVIRIS data, could be applied with Hyperion, or future

spaceborne hyperspectral instruments.
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