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Abstract

Continuous high-resolution pollen data for the past 225 ka from sediments in Bear Lake, Utah–Idaho reflect changes in vegetation and

climate that correlate well with variations in summer insolation and global ice-volume during MIS 1 through 7. Spectral analysis of the

pollen data identified peaks at 21–22 and 100 ka corresponding to periodicities in Earth’s precession and eccentricity orbital cycles.

Suborbital climatic fluctuations recorded in the pollen data, denoted by 6 and 5 ka cyclicities, are similar to Greenland atmospheric

temperatures and North Atlantic ice-rafting Heinrich events. Our results show that millennial-scale climate variability is also evident

during MIS 5, 6 and 7, including the occurrence of Heinrich-like events in MIS 6, showing the long-term feature of such climate

variability. This study provides clear evidence of a highly interconnected ocean–atmosphere system during the last two glacial/interglacial

cycles that extended its influence as far as continental western North America. Our study also contributes to a greater understanding of

the impact of long-term climate change on vegetation of western North America. Such high-resolution studies are particularly important

in efforts of the scientific community to predict the consequences of future climate change.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous paleoclimate proxy records from Greenland,
the North Atlantic and the Pacific Ocean have documented
the existence of millennial-scale climate variability during
the last glacial period (Bond et al., 1993; Dansgaard et al.,
1993; Grootes et al., 1993; Bond and Lotti, 1995; Behl and
Kennett, 1996). An increasing number of studies on marine
sediments document the occurrence of similar millennial-
scale variability during the penultimate glacial period and
previous interglacials (Oppo and Lehman, 1995; Maslin
and Tzedakis, 1996; Bond et al., 1997; Raymo et al., 1998;
Peterson et al., 2000; Tzedakis et al., 2004; Siddall et al.,
2006). High-resolution pollen records from continuous
sedimentary sequences provide an opportunity to examine
the regional response of vegetation to these climatic
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changes. Although the number of paleovegetation records
spanning the last glacial–interglacial cycle in North
America has increased in recent years (i.e. Clear Lake
(Adam et al., 1981), Humptulips (Heusser and Heusser,
1990), Santa Barbara Basin (Heusser, 1995, 1998, 2000),
Carp Lake (Whitlock and Bartlein, 1997), Searles Lake
(Litwin et al., 1999) and Owens Lake (Woolfenden, 2003)),
only a few pollen studies show suborbital-scale climate
variability in continental North America (Grimm et al.,
1993, 2006; Whitlock and Grigg, 1999) due to the very
fragmentary sedimentary record and the lack of temporal
resolution and/or sensitivity necessary to reveal the extent
and effects of these environmental fluctuations in vegeta-
tion. Documenting natural modes of climate variability
during warm intervals of the past that resemble the present
interglacial is important in understanding and assessing the
nature of postulated future climatic changes. Some pollen
studies show that the last two interglacials (MIS 5e and 7c)
were warmer than the Holocene (Tzedakis and Bennett,
1995; Whitlock and Bartlein, 1997; Heusser, 2000; Wool-
fenden, 2003). A detailed study of the vegetation during

dx.doi.org/10.1016/j.quascirev.2007.05.001
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past warm intervals is very important for the prediction of
future climate change on the vegetation as temperatures are
increasing today (Brohan et al., 2006).

Models of the relationship between lake size and pollen
catchment area suggest that large lakes with big drainage
basins will primarily record the regional pollen rain
(Jacobson and Bradshaw, 1981). We present here high-
resolution (ca 600 yr) pollen data from a sediment core
from Bear Lake, on the Utah–Idaho border, for the past
225 ka in order to (1) determine the regional vegetation and
climate history of this area and (2) compare these data with
other high-resolution records of global ice volume, Green-
land atmospheric temperature variations and vegetation
changes in continental North America.
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Fig. 1. Location of Bear Lake and borehole BL00-1E (marked with c
2. Bear Lake and core BL00-1E

Bear Lake is a large (surface area of 280 km2), deep (to
63m depth) lake located directly along the Idaho–Utah
border in the northern Great Basin (Bright et al., 2006) and
is one of the few large lakes that survived Holocene
desiccation in western North America (Bright et al., 2006).
The lake is located at the southern end of the larger Bear
Lake Valley and is surrounded by the Bear River Range on
the west (maximum elevation of approximately 3030m); on
the east is the Bear Lake Plateau with a maximum
elevation of approximately 2270m (Fig. 1). Prior to its
diversion into Bear Lake between 1909 and 1918 (Birdsey,
1989), the Bear River, which heads up in the Uinta
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Mountains ca 150 km to the south, passed ca 13 km to the
north of the lake (Bright et al., 2006).

Climate data for Laketown, Utah (1823m), immediately
south of the Lake, show maximum average July and
minimum average January temperatures of 26.4 and
�11.8 1C, respectively. Precipitation is received throughout
the year, with an annual average of 29.8 cm, with 132 cm of
snow depth (http://www.wrcc.dri.edu/Climsum.html).

The Uinta Range and adjacent foothills, to the east of
Bear Lake, span a broad vegetational gradient, with upper
slopes and summits vegetated by alpine tundra (43350m)
through subalpine Engelmann spruce (Picea engelmannii)/
subalpine fir (Abies lasiocarpa) forest (3200–3500m) and
montane lodgepole pine (Pinus contorta) forest
(2400–3200m) (Jackson et al., 2005). The southern and
eastern flanks of the Uintas, which have relatively high
summer precipitation, have extensive ponderosa pine
(P. ponderosa) forests (1900–2500m) and Rocky Mountain
piñon (P. edulis)—Utah juniper (Juniperus osteosperma)
woodlands (1675–2200m) grading downward into big
sagebrush (Artemisia) steppe and desert shrubland (Jack-
son et al., 2005). Pinus ponderosa forests, and woodlands of
P. edulis and J. osteosperma also occur on the north slope
of the range, south and west of the study site. On the
western flanks, P. contorta forests grade downslope into
mixed forests dominated by Douglas-fir (Pseudotsuga

menziesii) and Rocky Mountain aspen (Populus tremu-

loides), which in turn give way to Artemisia steppe and
desert shrubland below 2000m.

Many areas directly surrounding Bear Lake today have
been converted to agricultural and developed land. Natural
vegetation to the east, south and north is largely Artemisia

steppe and shrubland with Pinus edulis—Juniperus wood-
land on scarps to the east. To the west, with increasing
elevations in the Bear River Range, are Populus tremuloides

forest and woodland, Picea engelmannii–Abies lasiocarpa

forest and woodland (Southwest Regional Gap Analysis,
2003). This diversity makes the Bear Lake record a very
sensitive environment for recording variations in plant
distribution and climate.

The composition of sediments in the lake indicates that
the Bear River flowed naturally into Bear Lake several
times in the past, mostly during glaciations (here generally
considered cold/wet periods), carrying sediments and
pollen grains from the higher elevation Uinta Mountains
and the more immediate surroundings of Bear Lake (Dean
et al., 2006; Bright et al., 2006; this study). The lake was
mainly closed during interglaciations (warm/dry periods),
when the lake retracted into a topographically closed basin
(Bright et al., 2006). The modern Bear Lake is topogra-
phically separated from Bear River, except for regulated
flow via the canals. When Bear Lake rises and captures
flow from the Bear River, the lake then becomes a
topographically open basin (Laabs and Kaufman, 2003).

Sediments for this study come from a 120-m-long core
(BL00-1E; 4115700600N, 11111803000W; 51.12m water depth;
altitude 1805m asl; Fig. 1) recovered in 2000 using the
Global Lake Drilling to 800m (GLAD800) drill rig (Dean
et al., 2002; http://esp.cr.usgs.gov/info/lacs/glad.htm). Pre-
liminary age control for the BL00-1E core was provided by
14C dates correlated from cores BL96-1, 2, and 3 with the
upper portion of core BL00-1E, one magnetic excursion
(correlated to a standard sequence) and by a U/Th date
(127.773.9 ka) at 66.4m on fine-grained aragonite layer
(Colman et al., 2006) (Fig. 2). Because the initial set of
dates was restricted to the upper half of the BL00-1E core,
additional ages were inferred by direct correlation of the
carbonate and isotopic data to the independently dated
paleoclimate record from Devils Hole, Nevada, using
maxima and minima of the isotopic records as the tie
points (Colman et al., 2006). The age assessments suggest
that the core extends back to about 225 ka (Fig. 2). Because
the age model contains assumptions about the correlation
of Bear Lake to other climate records, this model should be
interpreted with caution (Colman et al., 2006). We also
provide an alternative, linear age model (Fig. 2), that
includes correlated radiocarbon dates plus the U/Th date
only.

http://www.wrcc.dri.edu/Climsum.html
http://esp.cr.usgs.gov/info/lacs/glad.htm
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Three additional radiocarbon-dated cores of 4–5m in
length have provided a record of the last glacial–intergla-
cial cycle from Bear Lake (Dean et al., 2006). Sediments
deposited during the last glacial (MIS 2) include reddish
silty clays that were transported to the lake by the Bear
River and contain glacial flour derived from the Uinta
Mountains to the east. These siliceous sediments have
relatively high magnetic susceptibility, and contain an
ostracode (Cytherissa lacustris) indicative of cold climates
and dilute water (Dean et al., 2006). Toward the end of
MIS 2, Bear Lake disconnected from the Bear River
(became a topographically closed basin) and sedimentation
became progressively dominated by carbonate precipita-
tion, which characterizes the majority of the Holocene
(MIS 1) sediments. Previous BL00-1E core studies show
that the large-scale trends in d18O in the lake broadly
parallel glacial–interglacial fluctuations known from other
proxy climate records (Bright et al., 2006). Three long
intervals with abundant endogenic aragonite and enriched
d18O and d13C values have been interpreted as warm and
dry periods and are correlated with the interglacials MIS 1,
5e and 7a (Bright et al., 2006).

3. Methods

Sediment samples were obtained from the joint Uni-
versity of Minnesota-NSF’s LacCore facility, where the
cores are curated permanently. Our core BL00-1E samples
for pollen analysis were taken at an average interval of 30-
cm (ca 600-yr) for the 120-m (ca 225 ka) record. Two
Lycopodium tracer tablets were added to each sample
(2 cm3) for pollen concentration calculation. Pollen extrac-
tion methods followed a modified Faegri and Iversen
(1989) procedure, including treatment with KOH, washing
through a 180-mm screen, and treatment with dilute HCl,
HF and acetolysis solution. Samples were then sieved
through an 8-mm Nitex screen to remove additional clay
and fine organics. Sample residues were stained with
safranin-O and mounted in silicone oil. Counting was
performed at 400� magnification on a compound light
microscope. Pollen identification was accomplished by
comparing the fossils with their present-day relatives using
published keys and the modern pollen reference collection
at Northern Arizona University. At least 300 terrestrial
pollen grains per slide were identified. The percentages of
each pollen taxa were calculated, and the results were
plotted in a detailed simplified diagram (Fig. 3). To
highlight basic patterns, taxa with similar relative tem-
perature and moisture requirements (i.e., warm and arid)
were grouped together and plotted in Fig. 4.

A cyclostratigraphic analysis was performed on the
BL00-1E pollen time series on the relative abundance of
taxa that grow in relatively warm and/or arid conditions.
We used the program REDFIT (Schultz and Mudelsee,
2002) with the objective of characterizing the different
periodicities present in the unevenly spaced pollen time
series and estimating its red-noise spectra. We ran two
scenarios, using (1) the age model of Colman et al. (2006)
and (2) a linear age model that was independent of
assumptions of the climate correlations that are built into
the Colman et al. model (Fig. 2). This simple age model is
based only on the U/Th age of 128 ka, plus the correlated
14C ages from the BL96 cores. The spectral analysis
assisted in identifying recurrent features or periodicities
through spectral peaks registered at differing frequencies
throughout the studied core.

4. Results and interpretation

Based upon the chronology established by Colman et al.
(2006), our average sampling interval corresponds to ca
600 years which has allowed us to produce a high-
resolution paleovegetation record covering the last three
interglacials. Consequently, our pollen zones are coeval
with Oxygen Isotope Stages 1 through 7 (Fig. 3), and we do
not define new pollen zones.
Interglacials (Zones 1, 5e and 7c) and interstadials

(Zones 3, 5a, 5c, 7a and 7e) have higher percentages of
Chenopodiaceae—Amaranthus, Sarcobatus, and Ambrosia,
as well as Juniperus and Quercus pollen (Fig. 3). These taxa
today are characteristic of arid, intermontane basins of
Utah and Idaho. We also use the term ‘‘warm’’ in a relative
sense to describe these taxa, since they are most abundant
during the Holocene sediment record from nearby
Dingle Swamp (L. Doner, http://esp.cr.usgs.gov/info/lacs/
polperc.htm). Chenopodiaceae—Amaranthus pollen, primarily
from flats of Atriplex spp., as well as Sarcobatus, is
commonly found today on basin floors throughout the
Great Basin (Welsh et al., 1987). High Ambrosia concen-
trations may result from species like A. psilostachya or A.

acanthicarpa, which can be common in similar environ-
ments (Welsh et al., 1987). Our confidence in including
these five taxa together comes not only from similar
occurrence in OIS 1 from Dingle Swamp but also from OIS
1 and 5e sediments in the Indian Cove Well core from a
Great Salt Lake (Davis and Moutoux, 1998). We included
Juniperus in this group as well for similar reasons (Davis
and Moutoux, 1998).
Glacial (Zones 2, 4 and 6) and stadial (Zones 5b, 5d, 7b

and 7d) periods are characterized at Bear Lake by higher
percentages of Picea, other Asteraceae, and Eriogonum.
The Picea pollen could represent either Engelmann
(P. engelmannii) or Colorado blue (P. pungens), both of
which grow today in the region (Welsh et al., 1987). The
occurrence of Picea clearly suggests colder and perhaps
wetter conditions (greater effective moisture), since each
has distributions today at higher elevations. It is unclear
which species contributed to higher percentages of other
Asteraceae and Eriogonum pollen. However, both pollen
types have higher percentages in Lateglacial sediments
from Dingle Swamp (L. Doner, http://esp.cr.usgs.gov/info/
lacs/polperc.htm), while Other Asteraceae is more abun-
dant in glacial period records from the Great Salt Lake
(Davis and Moutoux, 1998), ca 150 km to the southwest.

http://esp.cr.usgs.gov/info/lacs/polperc.htm
http://esp.cr.usgs.gov/info/lacs/polperc.htm
http://esp.cr.usgs.gov/info/lacs/polperc.htm
http://esp.cr.usgs.gov/info/lacs/polperc.htm
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We consider these occurrences to be important support for
including these taxa within the cold-wet indicators.

Artemisia and Poaceae are abundant in most of the
samples, and even though they oscillate widely throughout
the core, neither taxa showed a very clear association with
either interglacial/interstadial or glacial/stadial assem-
blages. For Artemisia, this could reflect its relatively wide
elevational range (A. tridentata alone today grows from ca
1200 to over 3050m elevation; Welsh et al., 1987), while
Poaceae includes many species of different ecological
requirements. Pinus, also consisting of many species,
appears to be very abundant during transitions between
the different stages.

4.1. Orbital-scale changes

High-resolution analysis of the Bear Lake sediments
shows close agreement between the pollen zones identified
here (Fig. 3) and the Marine Isotope Stage (MIS) and
Devils Hole d18O stratigraphy (Fig. 4). Our interpretations
of the pollen record correlate well with those of (1)
abundance in carbonates (calcite and aragonite) (Bright et
al., 2006; Dean et al., 2006) and (2) d18O and d13C in the
core (Bright et al., 2006), as well as with (3) the insolation
curve for the same time-span (Berger, 1978) (Fig. 4).
During periods of summer insolation maxima (Fig. 4F)
and low Northern Hemisphere ice volume (Fig. 4E) the
warm-arid taxa were very abundant (Fig. 4A) and the lake
sedimentation was generally characterized by abundant
aragonite deposition (Fig. 4D) and enriched d18O and d13C
values (Figs. 4B and 4C; Bright et al., 2006). This
correlation is particularly striking during the last three
interglacials in the record (MIS 1, 5e and 7c) (Fig. 4).
During times of insolation minima (Fig. 4F) and extensive
Northern Hemisphere ice volume (Fig. 4E), higher eleva-
tion tree (mainly Picea) and herb (mainly Other Aster-
aceae) pollen was more abundant (Fig. 3), sediments were
poor in aragonite (Fig. 4D) and the d18O and d13C values
were usually more negative (Bright et al., 2006) (Figs. 4B
and 4C). This correlation clearly links global climate
variations, regional vegetation changes and the main
chemical–mineralogical sedimentary fluctuations in Bear
Lake (Bright et al., 2006). We interpret these changes as
demonstrating a strong orbital signal in the BL00-1E
record which is obvious in the pollen spectra as discussed
above (Figs. 3 and 4).
Even though generally excellent correlation exists

between the different proxies studied from Bear Lake,
some discrepancies have also been observed. These
differences occur mainly during glaciations (i.e. MIS 6),
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and were previously observed by Bright et al. (2006) in the
isotopic data, with a low d18Obulk–d

13Cbulk correlation
coefficient. They are probably related to non-linear
responses in the isotopic evolution of both d18O and d13C
due to differences in biologic productivity and geomorphic
changes, independently of climate, but the differences in
d18O may also reflect differences in isotopic fractionation
between calcite and aragonite (Bright et al., 2006).
Interpretations from the pollen data are also occasionally
at odds with the isotopic record, which can be explained as
variations in the response (sensitivity, intensity, etc.) of the
different proxies to environmental or climate change as
well as different factors that could change the water
chemistry independent of climate, such as the effect of
tectonic and geomorphic processes (Laabs and Kaufman,
2003; Bright et al., 2006).

Our data support the hypothesis that the previous
interglacial (MIS 5e) was the warmest period of the last
225 ka in western North America, with the highest
percentages of warm-arid indicators (i.e., Ambrosia,
Chenopodiaceae—Amaranthus, Sarcobatus, with Quercus

and Juniperus; Figs. 3 and 4). Pollen grains, together with
the aragonite content and d18O, seem to indicate that stage
7a was warmer-drier than stage 5a. The early Holocene was
also characterized by the high abundances of warm taxa
coinciding with the summer insolation maxima (Figs. 3
and 4). Insolation maxima at these times undoubtedly led
to increased summer temperatures, decreased effective
precipitation, and indirect strengthening of the eastern
Pacific subtropical high-pressure system, which intensified
drought in this area (Whitlock and Bartlein, 1997).

Pollen indicators of colder conditions during pollen
Zones 2 (the Last Glacial Maximum) and 6 (the end of
MIS 6) coincide with insolation minima (Fig. 4). During
glacial periods, lower insolation values, along with the
extent of the Laurentide ice sheet and low atmospheric CO2

(Weaver et al., 1998) greatly influenced temperature,
effective precipitation and atmospheric circulation with a
displacement of polar jet stream to the south of its present
position, causing cooling and an increase in Pacific
moisture in the Bear Lake area (Bartlein et al., 1998).

The BL00-1E pollen record also shows the typical
structure of the glacial cycles, with long glaciations and
short deglaciations (saw-tooth structure) (Fig. 4). How-
ever, in this record pollen changes are more pronounced
during the Termination II transition than during Termina-
tion I. It is tempting to ascribe this to the greater summer
solar insolation during MIS 5e than MIS 1.

Vegetation records spanning the last 125 ka in North
America are rare but do reflect changes mainly related to
the orbital-scale controls of climate (Adam et al., 1981;
Heusser and Heusser, 1990; Whitlock and Bartlein, 1997;
Heusser, 1998; Litwin et al., 1999; Heusser, 2000;
Woolfenden, 2003). Independent of the different chron-
ologies used in these studies, a broad correspondence
between the patterns of western US (Santa Barbara Basin,
Clear Lake, Carp Lake, Owens Lake and Bear Lake)
pollen records since MIS 5 is apparent. For instance,
similar to the Bear Lake record, xerothermic indicators are
highest at Carp Lake (Pseudotsuga+Quercus+Cupressa-
ceae; Whitlock and Bartlein, 1997), at Clear Lake,
California (Quercus over Pinus; Adam et al., 1981) and in
Santa Barbara Basin sediments (Quercus; Heusser, 2000)
during MIS 5e, 5c, 5a and 1 (Fig. 5). Differences between
these records are probably due to the complex response of
different species to climate change, regional peculiarities or
errors in chronology. For example, the Owens Lake pollen
record (Woolfenden, 2003) differs from the other records in
that no clear subdivision exists between substages within
MIS5. The transition from stages 5a to 4 is more gradual
in the Bear Lake record, especially compared to the
coastal California sites (Santa Barbara Basin and Clear
Lake; Fig. 5).
These patterns of environmental change noted in the

Bear Lake and other western North American records
resemble sequences reconstructed from long European
pollen records, such as La Grande Pile (France) (Woillard,
1978), Ioannina (Greece) (Tzedakis and Bennett, 1995;
Tzedakis et al., 2002), MD95-2042 (Iberian Peninsula)
(Sánchez-Goñi et al., 1999, 2000) and MD95-2043 (western
Mediterranean Sea) (Sánchez-Goñi et al., 2002). In these
studies interglacials and interstadials are rich in temperate
trees while glacials and stadials are characterized by higher
percentages of steppe indicators, mainly Artemisia.

4.2. Millennial-scale changes

Millennial-scale changes are also noted in the pollen
spectra from Bear Lake. Colder periods here, characterized
by higher percentages of Picea, other Asteraceae, and
Eriogonum, are followed by relatively abrupt warmings,
indicated by higher percentages of Chenopodiaceae-Amar-

anthus, Sarcobatus, and Ambrosia, as well as Juniperus and
Quercus pollen. During the last glaciation (MIS 2, 3, and 4)
these fluctuations show patterns similar in age and
duration with millennial-scale climate variability as recog-
nized in marine records from the Santa Barbara (Hendy
and Kennett, 1999) and Cariaco (Peterson et al., 2000)
basins, and the North Atlantic, including Heinrich events
(Heinrich, 1988; Bond et al., 1993; Bond and Lotti, 1995)
and Greenland surface temperatures (Grootes et al., 1993;
Dansgaard et al., 1993) (the latter is particularly well
shown for interstadials 19, 20 and 21, Fig. 6). In particular,
events similar in timing to Heinrich events H1 through H6
are recorded in our pollen data (well shown for Heinrich
events 4, 5 and 6, Fig. 6). However, evidence of the
Younger Dryas does not show up in this core, either in the
pollen data, or in other proxies (Bright et al., 2006), nor are
there reversals in proxies analyzed from more closely
spaced samples in core BL96-2 (Dean et al., 2006). This
needs further investigation.
Long pollen records that demonstrate more than just a

few individual Heinrich events over the last glacial–inter-
glacial cycle are very rare in continental North America
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(Grimm et al., 2006; Huang et al., 2006), mostly due to
poor dating control (Kershaw and Whitlock, 2000) and
lack of high-resolution pollen analyses (Anderson et al.,
2000). In most of the northern hemisphere, Heinrich events
are associated with wetter and/or cooler temperatures
(Heinrich, 1988; Andrews, 1998; Hemming, 2004). Our
pollen data suggest that warm and arid pollen types decline
during these events, and are replaced by higher percentages
of Picea and Other Asteraceae, which are more character-
istic of cooler and wetter conditions (see discussion above).

Millennial-scale climatic variability is also apparent in
sediments from the interglacials MIS 1, 5 and 7 (Fig. 4) and
the glacial MIS 6 (Fig. 7) in the BL00-1E record. An
example of this is the record in the BL00-1E pollen record
of global cooling events as the Montaigu substage
(Woillard, 1978) during MIS 5c, or the ‘‘intra-Eemian
cooling event’’ (Maslin and Tzedakis, 1996) during MIS 5e
as in Clear Lake (Adam et al., 1981), Santa Barbara Basin
(Heusser, 2000) in North America, (Fig. 5), as well as in
some European records (e.g. Tzedakis et al., 1997). During
MIS 6 millennial-scale variations in the pollen and isotopic
record (Bright et al., 2006; Fig. 7) from Bear Lake bear
close temporal similarities to those observed during the
most recent glaciation (MIS 2–4; Fig. 6). We have
identified eight significant Heinrich-like cooling events
and seven subsequent warming periods between stages 7a
and 5e (Fig. 7). A very clear correlation exists between the
variability observed in the pollen data and d13C values,
indicating a strong connection between climate variability
and changes in water chemistry. Where discrepancies
exist between these two paleoclimate proxies and the
d18O (Fig. 7), we ascribe these to variations in the response
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and sensitivity of the different proxies to environmental or
climate change (see Section 4.1 above).

The two spectral analysis runs (either the Colman et al.
(2006) or linear age models) on the BL00-1E pollen time
series using the warm-arid taxa both show prominent peaks
at 100 ka, with a 22 ka (Colman et al. model) or a 21 ka
(linear model) peak (Fig. 8), correlating precisely with the
periodicities of the Earth’s precession and eccentricity
cycles, respectively. Although we recognize a distinct
100 ka periodicity in our analysis, the fact that only a little
over two full eccentricity cycles (225 ka) are represented in
the Bear Lake record precludes a definitive assessment of
this cycle. However, the 21–22 ka peak correlating to the
precession cycle is very strong in this record. Two smaller
and less significant cycles are also present, centered on 6–7
and 5 ka periodicities (Fig. 8), confirming additional
suborbital-scale climatic variability in the pollen record
of Bear Lake. Though variations at these periodicities are
evident throughout the pollen time series (Figs. 6 and 7),
the ca 6 ka cycle is most obvious in the pollen and isotope
record during the penultimate glaciation (Fig. 7).
The suborbital component of climatic variability ob-

served in this core appears to have parallels in other
paleoclimatic time series. The variability at the 6 ka
frequency in the Bear Lake pollen is comparable to the
(a) ca 6.7 ka periodicity recorded in abundance cycles of
herb pollen in South China Sea (Luo et al., 2005); (b) 7 ka
periodicity in loess records from 70–120 ka in China (An
and Porter, 1997); (c) 7.5 ka periodicity in sediment-
lightness record within MIS 5 sediments in the North
Atlantic (Chapman and Shackleton, 1999); and (d) the ca
8.4 ka periodicity recorded in abundance cycles of the
marine alga Florisphaera profunda in equatorial Atlantic
(McIntyre and Molfino, 1996). Periodicities very similar to
the 5 ka have also been identified in North Atlantic records
from the last glacial cycle (Chapman and Shackleton, 1998,
1999; An and Porter, 1997) and in a pollen record from
South China Sea (Luo et al., 2005). It is noteworthy that 7
and 5 ka periodicities are the 3rd and 4th harmonics of the
precession cycle suggesting that this band of millennial-
scale variability is related to precession (e.g., Berger et al.,
2006).
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5. Conclusions

The pollen record from Bear Lake is arguably the most
detailed and continuous record of vegetation change for
the last 225 ka in North America. Although the Bear Lake
sedimentary record is similar in many regards to patterns
of paleoecologic and paleoclimatic change from other long
records in western North America, it differs substantially in
that it extends the paleoenvironmental record back to MIS
7 with sampling spacing of ca 600-year intervals.

Though potential problems exist in the dating of this
record (Colman et al., 2006), the original Colman et al. age
model and the linear model show very similar results. Our
record reflects changes in vegetation and climate that
correlate well with orbital-scale variations in summer
insolation and global ice-volume. This confirms a tight
coupling between global climate and vegetation change
from sites beyond the limits of Pleistocene glaciation. The
Bear Lake paleovegetation record is particularly sensitive
to, and undoubtedly influenced by, climatic cycles related
to Earth’s precession, obliquity and eccentricity para-
meters. Suborbital climatic fluctuations reflected in the
pollen data, with cyclicities of 6–7 and 5 ka, have also been
identified. These are characteristic of the entire pollen
record and bear similarities to the records of Greenland
and Antarctic atmospheric temperatures, as well as to
North Atlantic ice-rafting events. We believe that our
analysis here is one of the first continental records to show
millennial-scale variability and Heinrich-like events in
stage MIS 6, demonstrating the importance of high-
resolution pollen analyses over long timescales, and the
high sensitivity of the regional vegetation not only to
orbital-scale but also to millennial-scale climatic variabil-
ity. The concordance of terrestrial, oceanic and atmo-
spheric paleoclimatic records supports the conclusion that
the high-frequency climatic variability represents wide-
spread changes in the global climate system. This, in turn,
is particularly important in the efforts of the scientific
community to predict the consequences of future climate
change.
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